Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Pediatr Res ; 93(3): 559-569, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35732822

RESUMEN

BACKGROUND: Kawasaki disease (KD) is a systemic vasculitis that mainly affects children under 5 years of age. Up to 30% of patients develop coronary artery abnormalities, which are reduced with early treatment. Timely diagnosis of KD is challenging but may become more straightforward with the recent discovery of a whole-blood host response classifier that discriminates KD patients from patients with other febrile conditions. Here, we bridged this microarray-based classifier to a clinically applicable quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay: the Kawasaki Disease Gene Expression Profiling (KiDs-GEP) classifier. METHODS: We designed and optimized a qRT-PCR assay and applied it to a subset of samples previously used for the classifier discovery to reweight the original classifier. RESULTS: The performance of the KiDs-GEP classifier was comparable to the original classifier with a cross-validated area under the ROC curve of 0.964 [95% CI: 0.924-1.00] vs 0.992 [95% CI: 0.978-1.00], respectively. Both classifiers demonstrated similar trends over various disease conditions, with the clearest distinction between individuals diagnosed with KD vs viral infections. CONCLUSION: We successfully bridged the microarray-based classifier into the KiDs-GEP classifier, a more rapid and more cost-efficient qRT-PCR assay, bringing a diagnostic test for KD closer to the hospital clinical laboratory. IMPACT: A diagnostic test is needed for Kawasaki disease and is currently not available. We describe the development of a One-Step multiplex qRT-PCR assay and the subsequent modification (i.e., bridging) of the microarray-based host response classifier previously described by Wright et al. The bridged KiDs-GEP classifier performs well in discriminating Kawasaki disease patients from febrile controls. This host response clinical test for Kawasaki disease can be adapted to the hospital clinical laboratory.


Asunto(s)
Síndrome Mucocutáneo Linfonodular , Niño , Humanos , Preescolar , Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome Mucocutáneo Linfonodular/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Perfilación de la Expresión Génica , Fiebre , Curva ROC
2.
Am J Med Genet A ; 161A(10): 2626-33, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23949913

RESUMEN

We describe a family that segregated an autosomal dominant form of craniosynostosis characterized by variable expression and limited extra-cranial features. Linkage analysis and genome sequencing were performed to identify the underlying genetic mutation. A c.443C>T missense mutation in MSX2, which predicts p.Pro148Leu was identified and segregated with the disease in all affected family members. One other family with autosomal dominant craniosynostosis (Boston type) has been reported to have a missense mutation in MSX2. These data confirm that missense mutations altering the proline at codon 148 of MSX2 cause dominantly inherited craniosynostosis.


Asunto(s)
Craneosinostosis/diagnóstico , Craneosinostosis/genética , Proteínas de Homeodominio/genética , Mutación , Adolescente , Adulto , Anciano , Secuencia de Aminoácidos , Secuencia de Bases , Niño , Preescolar , Femenino , Ligamiento Genético , Humanos , Lactante , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Fenotipo , Radiografía , Reproducibilidad de los Resultados , Alineación de Secuencia , Análisis de Secuencia de ADN , Cráneo/diagnóstico por imagen , Cráneo/patología , Adulto Joven
3.
J Mol Diagn ; 23(1): 120-129, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152501

RESUMEN

Multiple myeloma (MM) is an incurable plasma cell cancer with a large variability in survival. Patients with MM classified as high risk by the SKY92 gene expression classifier are at high risk of relapse and short survival. Analytical validation of the SKY92 assay was performed with primary bone marrow specimens from 12 patients with MM and 7 reference cell line specimens. The SKY92 results were 100% concordant with the reference and/or their expected result for sensitivity, specificity, microarray stability, and RLT buffer stability. The SKY92 results were 90% concordant for primary specimen stability, 96.4% concordant for intermediate precision, and 80% to 100% concordant for RNA stability. For the cell-line reproducibility, the concordance was at least 92.9%, except for one near-cut point specimen. For the clinical specimen reproducibility, the concordance was 100%, except for two near-cut point specimens. Three independent laboratories were concordant in ≥77.8% and ≥92.9% of experiments for patient specimens and cell lines, respectively. Statistical acceptance thresholds were developed as Δ ≤1.48 (change in SKY92 score) and SD ≤0.45 (SD across SKY92 scores). Using the Clinical and Laboratory Standards Institute method of choice (EP05-A2/A3), restricted maximum likelihood, the observed Δ values (0 to 1.14) and SDs (0.22 to 0.31) passed acceptance criteria. Thus, we successfully present analytical validation for the SKY92 assay as a prognostic molecular test for individual patients with MM.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Técnicas de Diagnóstico Molecular/métodos , Mieloma Múltiple/genética , Transcriptoma , Biomarcadores de Tumor/genética , Donantes de Sangre , Estudios de Casos y Controles , Línea Celular Tumoral , Humanos , Mieloma Múltiple/mortalidad , Mieloma Múltiple/patología , Pronóstico , Recurrencia , Reproducibilidad de los Resultados , Medición de Riesgo , Sensibilidad y Especificidad
4.
Birth Defects Res ; 112(9): 670-687, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32298054

RESUMEN

BACKGROUND: Patients born with esophageal atresia (EA) have a higher incidence of infantile hypertrophic pyloric stenosis (IHPS), suggestive of a relationship. A shared etiology makes sense from a developmental perspective as both affected structures are foregut derived. A genetic component has been described for both conditions as single entities and EA and IHPS are variable components in several monogenetic syndromes. We hypothesized that defects disturbing foregut morphogenesis are responsible for this combination of malformations. METHODS: We investigated the genetic variation of 15 patients with both EA and IHPS with unaffected parents using exome sequencing and SNP array-based genotyping, and compared the results to mouse transcriptome data of the developing foregut. RESULTS: We did not identify putatively deleterious de novo mutations or recessive variants. However, we detected rare inherited variants in EA or IHPS disease genes or in genes important in foregut morphogenesis, expressed at the proper developmental time-points. Two pathways were significantly enriched (p < 1 × 10-5 ): proliferation and differentiation of smooth muscle cells and self-renewal of satellite cells. CONCLUSIONS: None of our findings could fully explain the combination of abnormalities on its own, which makes complex inheritance the most plausible genetic explanation, most likely in combination with mechanical and/or environmental factors. As we did not find one defining monogenetic cause for the EA/IHPS phenotype, the impact of the corrective surgery could should be further investigated.


Asunto(s)
Atresia Esofágica , Estenosis Hipertrófica del Piloro , Animales , Atresia Esofágica/genética , Humanos , Incidencia , Ratones , Fenotipo , Estenosis Hipertrófica del Piloro/genética , Secuenciación del Exoma
5.
Eur J Hum Genet ; 26(4): 552-560, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29374277

RESUMEN

Intellectual disability (ID) comprises a large group of heterogeneous disorders, often without a known molecular cause. X-linked ID accounts for 5-10% of male ID cases. We investigated a large, three-generation family with mild ID and behavior problems in five males and one female, with a segregation suggestive for X-linked inheritance. Linkage analysis mapped a disease locus to a 7.6 Mb candidate region on the X-chromosome (LOD score 3.3). Whole-genome sequencing identified a 2 bp insertion in exon 2 of the chromosome X open reading frame 56 gene (CXorf56), resulting in a premature stop codon. This insertion was present in all intellectually impaired individuals and carrier females. Additionally, X-inactivation status showed skewed methylation patterns favoring the inactivation of the mutated allele in the unaffected carrier females. We demonstrate that the insertion leads to nonsense-mediated decay and that CXorf56 mRNA expression is reduced in the impaired males and female. In murine brain slices and primary hippocampal neuronal cultures, CXorf56 protein was present and localized in the nucleus, cell soma, dendrites, and dendritic spines. Although no other families have been identified with pathogenic variants in CXorf56, these results suggest that CXorf56 is the causative gene in this family, and thus a novel candidate gene for X-linked ID with behavior problems.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Adolescente , Adulto , Animales , Células Cultivadas , Codón de Terminación/genética , Metilación de ADN , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Discapacidad Intelectual/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neuronas/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Nucleares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA