RESUMEN
BACKGROUND: Foot problems are highly prevalent in patients with rheumatoid arthritis. Treatment of foot problems related to rheumatoid arthritis often consists of custom made foot orthoses. One of the assumed working mechanisms of foot orthoses is redistribution of plantar pressure by creating a larger weight bearing area. Overall, the reported treatment effect of foot orthoses on foot pain in rheumatoid arthritis is small to medium. Therefore, we developed a foot orthoses optimization protocol for evaluation and adaptation of foot orthoses by using the feedback of in-shoe plantar pressure measurements. The objectives of the present study were: 1) to evaluate the 3-months outcomes of foot orthoses developed according to the protocol on pain, physical functioning and forefoot plantar pressure in patients with foot problems related to rheumatoid arthritis, and 2) to determine the relationship between change in forefoot plantar pressure and change in pain and physical functioning. METHODS: Forty-five patients with foot problems related to rheumatoid arthritis were included and received foot orthoses developed according to the protocol. Outcome measures were assessed at baseline and after three months of wearing foot orthoses in 38 patients. Change scores and effect sizes (ES) were calculated for pain, physical functioning and plantar pressure. In a subgroup of patients with combined forefoot pain and high plantar pressure, the relationship between change in plantar pressure and change in pain and physical functioning was analyzed. RESULTS: In the total group of 38 patients, statistically significant changes in pain (ES 0.69), physical functioning (ES 0.82) and forefoot plantar pressure (ES 0.35) were found. In the subgroup (n = 23) no statistically significant relationships were found between change in plantar pressure and change in pain or physical functioning. CONCLUSION: Foot orthoses developed according to a protocol for improving the plantar pressure redistribution properties lead to medium to large improvements in pain and physical functioning. The hypothesis that more pressure reduction would lead to better clinical outcomes could not be proven.