Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Haematol ; 195(5): 710-721, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34490616

RESUMEN

Patients with acute myeloid leukaemia (AML) have a five-year survival rate of 28·7%. Natural killer (NK)-cell have anti-leukaemic activity. Here, we report on a series of 13 patients with high-risk R/R AML, treated with repeated infusions of double-bright (CD56bright /CD16bright ) expanded NK cells at an academic centre in Brazil. NK cells from HLA-haploidentical donors were expanded using K562 feeder cells, modified to express membrane-bound interleukin-21. Patients received FLAG, after which cryopreserved NK cells were thawed and infused thrice weekly for six infusions in three dose cohorts (106 -107 cells/kg/infusion). Primary objectives were safety and feasibility. Secondary endpoints included overall response (OR) and complete response (CR) rates at 28-30 days after the first infusion. Patients received a median of five prior lines of therapy, seven with intermediate or adverse cytogenetics, three with concurrent central nervous system (CNS) leukaemia, and one with concurrent CNS mycetoma. No dose-limiting toxicities, infusion-related fever, or cytokine release syndrome were observed. An OR of 78·6% and CR of 50·0% were observed, including responses in three patients with CNS disease and clearance of a CNS mycetoma. Multiple infusions of expanded, cryopreserved NK cells were safely administered after intensive chemotherapy in high-risk patients with R/R AML and demonstrated encouraging outcomes.


Asunto(s)
Antígeno CD56/análisis , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/trasplante , Leucemia Mieloide Aguda/terapia , Receptores de IgG/análisis , Adolescente , Adulto , Brasil/epidemiología , Antígeno CD56/inmunología , Niño , Femenino , Proteínas Ligadas a GPI/análisis , Proteínas Ligadas a GPI/inmunología , Enfermedad Injerto contra Huésped/etiología , Humanos , Inmunoterapia Adoptiva/efectos adversos , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/epidemiología , Leucemia Mieloide Aguda/inmunología , Masculino , Persona de Mediana Edad , Prueba de Estudio Conceptual , Receptores de IgG/inmunología , Adulto Joven
2.
Proc Natl Acad Sci U S A ; 113(48): E7788-E7797, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849617

RESUMEN

Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR+ T cells with preserved TSCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19+ leukemia. Long-lived T cells were CD45ROnegCCR7+CD95+, phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR+ T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.


Asunto(s)
Interleucina-15/metabolismo , Neoplasias Experimentales/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/fisiología , Animales , Antígenos CD19/metabolismo , Humanos , Inmunoterapia Adoptiva , Activación de Linfocitos , Ratones , Células Precursoras de Linfocitos T/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal
3.
Immunol Rev ; 257(1): 181-90, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24329797

RESUMEN

The advent of efficient approaches to the genetic modification of T cells has provided investigators with clinically appealing methods to improve the potency of tumor-specific clinical grade T cells. For example, gene therapy has been successfully used to enforce expression of chimeric antigen receptors (CARs) that provide T cells with ability to directly recognize tumor-associated antigens without the need for presentation by human leukocyte antigen. Gene transfer of CARs can be undertaken using viral-based and non-viral approaches. We have advanced DNA vectors derived from the Sleeping Beauty (SB) system to avoid the expense and manufacturing difficulty associated with transducing T cells with recombinant viral vectors. After electroporation, the transposon/transposase improves the efficiency of integration of plasmids used to express CAR and other transgenes in T cells. The SB system combined with artificial antigen-presenting cells (aAPC) can selectively propagate and thus retrieve CAR(+) T cells suitable for human application. This review describes the translation of the SB system and aAPC for use in clinical trials and highlights how a nimble and cost-effective approach to developing genetically modified T cells can be used to implement clinical trials infusing next-generation T cells with improved therapeutic potential.


Asunto(s)
Antígenos CD19/inmunología , Terapia Genética , Vectores Genéticos/genética , Recombinación Homóloga , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Técnicas de Cultivo de Célula , Epítopos de Linfocito T/inmunología , Técnicas de Transferencia de Gen , Ingeniería Genética , Terapia Genética/métodos , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
4.
Blood ; 122(8): 1341-9, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23741009

RESUMEN

Long-term engraftment of allogeneic cells necessitates eluding immune-mediated rejection, which is currently achieved by matching for human leukocyte antigen (HLA) expression, immunosuppression, and/or delivery of donor-derived cells to sanctuary sites. Genetic engineering provides an alternative approach to avoid clearance of cells that are recognized as "non-self" by the recipient. To this end, we developed designer zinc finger nucleases and employed a "hit-and-run" approach to genetic editing for selective elimination of HLA expression. Electro-transfer of mRNA species coding for these engineered nucleases completely disrupted expression of HLA-A on human T cells, including CD19-specific T cells. The HLA-A(neg) T-cell pools can be enriched and evade lysis by HLA-restricted cytotoxic T-cell clones. Recognition by natural killer cells of cells that had lost HLA expression was circumvented by enforced expression of nonclassical HLA molecules. Furthermore, we demonstrate that zinc finger nucleases can eliminate HLA-A expression from embryonic stem cells, which broadens the applicability of this strategy beyond infusing HLA-disparate immune cells. These findings establish that clinically appealing cell types derived from donors with disparate HLA expression can be genetically edited to evade an immune response and provide a foundation whereby cells from a single donor can be administered to multiple recipients.


Asunto(s)
Desoxirribonucleasas/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Trasplante de Células Madre/métodos , Trasplante Homólogo , Antígenos CD19/metabolismo , Secuencia de Bases , Diferenciación Celular , Citotoxicidad Inmunológica/inmunología , Electroporación , Células Madre Embrionarias/citología , Técnicas de Transferencia de Gen , Células HEK293 , Humanos , Leucocitos Mononucleares/citología , Datos de Secuencia Molecular , Ingeniería de Proteínas , Linfocitos T/inmunología , Dedos de Zinc
5.
Blood ; 119(24): 5697-705, 2012 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-22535661

RESUMEN

Clinical-grade T cells are genetically modified ex vivo to express a chimeric antigen receptor (CAR) to redirect specificity to a tumor associated antigen (TAA) thereby conferring antitumor activity in vivo. T cells expressing a CD19-specific CAR recognize B-cell malignancies in multiple recipients independent of major histocompatibility complex (MHC) because the specificity domains are cloned from the variable chains of a CD19 monoclonal antibody. We now report a major step toward eliminating the need to generate patient-specific T cells by generating universal allogeneic TAA-specific T cells from one donor that might be administered to multiple recipients. This was achieved by genetically editing CD19-specific CAR(+) T cells to eliminate expression of the endogenous αß T-cell receptor (TCR) to prevent a graft-versus-host response without compromising CAR-dependent effector functions. Genetically modified T cells were generated using the Sleeping Beauty system to stably introduce the CD19-specific CAR with subsequent permanent deletion of α or ß TCR chains with designer zinc finger nucleases. We show that these engineered T cells display the expected property of having redirected specificity for CD19 without responding to TCR stimulation. CAR(+)TCR(neg) T cells of this type may potentially have efficacy as an off-the-shelf therapy for investigational treatment of B-lineage malignancies.


Asunto(s)
Antígenos CD19/inmunología , Epítopos/inmunología , Ingeniería Genética , Inmunoterapia/métodos , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Recombinantes/inmunología , Linfocitos T/inmunología , Adulto , Células Presentadoras de Antígenos/inmunología , Antígenos de Neoplasias/inmunología , Antígenos CD28/metabolismo , Complejo CD3/metabolismo , Células Cultivadas , Endonucleasas/metabolismo , Técnicas de Inactivación de Genes , Humanos , Células K562 , Activación de Linfocitos/inmunología , Dedos de Zinc
6.
Mol Ther ; 21(3): 638-47, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23295945

RESUMEN

Even though other γδ T-cell subsets exhibit antitumor activity, adoptive transfer of γδ Tcells is currently limited to one subset (expressing Vγ9Vδ2 T-cell receptor (TCR)) due to dependence on aminobisphosphonates as the only clinically appealing reagent for propagating γδ T cells. Therefore, we developed an approach to propagate polyclonal γδ T cells and rendered them bispecific through expression of a CD19-specific chimeric antigen receptor (CAR). Peripheral blood mononuclear cells (PBMC) were electroporated with Sleeping Beauty (SB) transposon and transposase to enforce expression of CAR in multiple γδ T-cell subsets. CAR(+)γδ T cells were expanded on CD19(+) artificial antigen-presenting cells (aAPC), which resulted in >10(9) CAR(+)γδ T cells from <10(6) total cells. Digital multiplex assay detected TCR mRNA coding for Vδ1, Vδ2, and Vδ3 with Vγ2, Vγ7, Vγ8, Vγ9, and Vγ10 alleles. Polyclonal CAR(+)γδ T cells were functional when TCRγδ and CAR were stimulated and displayed enhanced killing of CD19(+) tumor cell lines compared with CAR(neg)γδ T cells. CD19(+) leukemia xenografts in mice were reduced with CAR(+)γδ T cells compared with control mice. Since CAR, SB, and aAPC have been adapted for human application, clinical trials can now focus on the therapeutic potential of polyclonal γδ T cells.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos CD19/metabolismo , Línea Celular Tumoral , Electroporación , Humanos , Leucemia/terapia , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Transposasas/genética , Transposasas/metabolismo
7.
Cytotherapy ; 14(1): 7-11, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22172091

RESUMEN

Infections with a range of common community viruses remain a major cause of mortality and morbidity after allogeneic hematopoietic stem cell transplantation. T cells specific for cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenoviruses can safely prevent and infections with these three most common culprits, but the manufacture of individual T cell lines for each virus would be prohibitive in terms of time and cost. We have demonstrated that T cells specific for all three viruses can be manufactured in a single culture using monocytes and EBV-transformed B lymphoblastoid cell lines (LCLs), both transduced with an adenovirus vector expressing pp65 of CMV, as antigen-presenting cells. Trivirus-specific T cell lines produced from healthy stem cell donors could prevent and treat infections with all three viruses, not only in the designated recipient, but in unrelated, partially-HLA-matched third party recipients. We now provide the details and logistics of T cell manufacture.


Asunto(s)
Adenoviridae/inmunología , Técnicas de Cultivo de Célula , Citomegalovirus/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Herpesvirus Humano 4/inmunología , Linfocitos T Citotóxicos/inmunología , Virosis/etiología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/trasplante , Línea Celular Transformada , Proliferación Celular , Citotoxicidad Inmunológica , Antígenos HLA/inmunología , Humanos , Fosfoproteínas/inmunología , Linfocitos T Citotóxicos/trasplante , Trasplante Homólogo/efectos adversos , Proteínas de la Matriz Viral/inmunología , Virosis/terapia
8.
Front Immunol ; 13: 1032397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439104

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy has emerged recently as a standard of care treatment for patients with relapsed or refractory acute lymphoblastic leukemia (ALL) and several subtypes of B-cell non-Hodgkin lymphoma (NHL). However, its use remains limited to highly specialized centers, given the complexity of its administration and its associated toxicities. We previously reported our experience in using a novel Sleeping Beauty (SB) CD19-specific CAR T-cell therapy in the peri-transplant setting, where it exhibited an excellent safety profile with encouraging survival outcomes. We have since modified the SB CD19 CAR construct to improve its efficacy and shorten its manufacturing time. We report here the phase 1 clinical trial safety results. Fourteen heavily treated patients with relapsed/refractory ALL and NHL were infused. Overall, no serious adverse events were directly attributed to the study treatment. Three patients developed grades 1-2 cytokine release syndrome and none of the study patients experienced neurotoxicity. All dose levels were well tolerated and no dose-limiting toxicities were reported. For efficacy, 3 of 8 (38%) patients with ALL achieved CR/CRi (complete remission with incomplete count recovery) and 1 (13%) patient had sustained molecular disease positivity. Of the 4 patients with DLBCL, 2 (50%) achieved CR. The SB-based CAR constructs allow manufacturing of targeted CAR T-cell therapies that are safe, cost-effective and with encouraging antitumor activity.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Proteínas Adaptadoras Transductoras de Señales , Antígenos CD19 , Linfocitos B , Neoplasias Hematológicas/etiología , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Neoplasias/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T/genética
9.
Biomed Microdevices ; 12(5): 855-63, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20574820

RESUMEN

It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 x 10(8) primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19+ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.


Asunto(s)
Electroporación/instrumentación , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Linfocitos T/inmunología , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/inmunología , Antígenos CD19/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , ARN Mensajero/genética , Receptores de Antígenos/genética , Receptores de Antígenos/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Linfocitos T/citología
10.
Oncogene ; 37(27): 3686-3697, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29622795

RESUMEN

The CD56 antigen (NCAM-1) is highly expressed on several malignancies with neuronal or neuroendocrine differentiation, including small-cell lung cancer and neuroblastoma, tumor types for which new therapeutic options are needed. We hypothesized that CD56-specific chimeric antigen receptor (CAR) T cells could target and eliminate CD56-positive malignancies. Sleeping Beauty transposon-generated CD56R-CAR T cells exhibited αßT-cell receptors, released antitumor cytokines upon co-culture with CD56+ tumor targets, demonstrated a lack of fratricide, and expression of cytolytic function in the presence of CD56+ stimulation. The CD56R-CAR+ T cells are capable of killing CD56+ neuroblastoma, glioma, and SCLC tumor cells in in vitro co-cultures and when tested against CD56+ human xenograft neuroblastoma models and SCLC models, CD56R-CAR+ T cells were able to inhibit tumor growth in vivo. These results indicate that CD56-CARs merit further investigation as a potential treatment for CD56+ malignancies.


Asunto(s)
Antígeno CD56/metabolismo , Glioma/terapia , Neoplasias Pulmonares/terapia , Neuroblastoma/terapia , Receptores Quiméricos de Antígenos/metabolismo , Carcinoma Pulmonar de Células Pequeñas/terapia , Linfocitos T/inmunología , Linfocitos T/trasplante , Animales , Antígeno CD56/genética , Línea Celular Tumoral , Glioma/patología , Humanos , Neoplasias Pulmonares/patología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Neuroblastoma/patología , Carcinoma Pulmonar de Células Pequeñas/patología , Transposasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
PLoS One ; 11(8): e0159477, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27548616

RESUMEN

Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR's in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies.


Asunto(s)
Ingeniería Genética/métodos , Inmunoterapia Adoptiva/métodos , Subunidad alfa del Receptor de Interleucina-3/inmunología , Leucemia Mieloide Aguda/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteínas Recombinantes de Fusión/inmunología , Linfocitos T/trasplante , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Antígenos CD28/genética , Antígenos CD28/inmunología , Caspasa 9/genética , Caspasa 9/inmunología , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Expresión Génica , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/patología , Humanos , Subunidad alfa del Receptor de Interleucina-3/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida , Plásmidos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Recombinantes de Fusión/genética , Anticuerpos de Dominio Único/genética , Linfocitos T/citología , Linfocitos T/inmunología , Transfección , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
12.
J Immunother ; 39(5): 205-17, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27163741

RESUMEN

Potential for on-target, but off-tissue toxicity limits therapeutic application of genetically modified T cells constitutively expressing chimeric antigen receptors (CARs) from tumor-associated antigens expressed in normal tissue, such as epidermal growth factor receptor (EGFR). Curtailing expression of CAR through modification of T cells by in vitro-transcribed mRNA species is one strategy to mitigate such toxicity. We evaluated expression of an EGFR-specific CAR coded from introduced mRNA in human T cells numerically expanded ex vivo to clinically significant numbers through coculture with activating and propagating cells (AaPC) derived from K562 preloaded with anti-CD3 antibody. The density of AaPC could be adjusted to affect phenotype of T cells such that reduced ratio of AaPC resulted in higher proportion of CD8 and central memory T cells that were more conducive to electrotransfer of mRNA than T cells expanded with high ratios of AaPC. RNA-modified CAR T cells produced less cytokine, but demonstrated similar cytolytic capacity as DNA-modified CAR T cells in response to EGFR-expressing glioblastoma cells. Expression of CAR by mRNA transfer was transient and accelerated by stimulation with cytokine and antigen. Loss of CAR abrogated T-cell function in response to tumor and normal cells expressing EGFR. We describe a clinically applicable method to propagate and modify T cells to transiently express EGFR-specific CAR to target EGFR-expressing tumor cells that may be used to limit on-target, off-tissue toxicity to normal tissue.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Vacunas contra el Cáncer/inmunología , Glioblastoma/terapia , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/genética , Subgrupos de Linfocitos T/fisiología , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Proliferación Celular , Técnicas de Cocultivo , Receptores ErbB/inmunología , Ingeniería Genética , Glioblastoma/inmunología , Humanos , Memoria Inmunológica , Activación de Linfocitos , ARN Mensajero/genética , Especificidad del Receptor de Antígeno de Linfocitos T
13.
Mol Imaging Biol ; 18(6): 838-848, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27246312

RESUMEN

PURPOSE: We have incorporated a positron emission tomography (PET) functionality in T cells expressing a CD19-specific chimeric antigen receptor (CAR) to non-invasively monitor the adoptively transferred cells. PROCEDURES: We engineered T cells to express CD19-specific CAR, firefly luciferase (ffLuc), and herpes simplex virus type-1 thymidine kinase (TK) using the non-viral-based Sleeping Beauty (SB) transposon/transposase system adapted for human application. Electroporated primary T cells were propagated on CD19+ artificial antigen-presenting cells. RESULTS: After 4 weeks, 90 % of cultured cells exhibited specific killing of CD19+ targets in vitro, could be ablated by ganciclovir, and were detected in vivo by bioluminescent imaging and PET following injection of 2'-deoxy-2'-[18F]fluoro-5-ethyl-1-ß-D-arabinofuranosyl-uracil ([18F]FEAU). CONCLUSION: This is the first report demonstrating the use of SB transposition to generate T cells which may be detected using PET laying the foundation for imaging the distribution and trafficking of T cells in patients treated for B cell malignancies.


Asunto(s)
Herpesvirus Humano 1/enzimología , Tomografía de Emisión de Positrones/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Timidina Quinasa/metabolismo , Transposasas/metabolismo , Animales , Arabinofuranosil Uracilo/análogos & derivados , Arabinofuranosil Uracilo/química , Línea Celular , Ganciclovir/farmacología , Técnicas de Transferencia de Gen , Humanos , Luciferasas/metabolismo , Ratones , Radiofármacos/química , Transgenes , Xenopus
14.
Sci Rep ; 6: 21757, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26902653

RESUMEN

Mismatch of human leukocyte antigens (HLA) adversely impacts the outcome of patients after allogeneic hematopoietic stem-cell transplantation (alloHSCT). This translates into the clinical requirement to timely identify suitable HLA-matched donors which in turn curtails the chances of recipients, especially those from a racial minority, to successfully undergo alloHSCT. We thus sought to broaden the existing pool of registered unrelated donors based on analysis that eliminating the expression of the HLA-A increases the chance for finding a donor matched at HLA-B, -C, and -DRB1 regardless of a patient's race. Elimination of HLA-A expression in HSC was achieved using artificial zinc finger nucleases designed to target HLA-A alleles. Significantly, these engineered HSCs maintain their ability to engraft and reconstitute hematopoiesis in immunocompromised mice. This introduced loss of HLA-A expression decreases the need to recruit large number of donors to match with potential recipients and has particular importance for patients whose HLA repertoire is under-represented in the current donor pool. Furthermore, the genetic engineering of stem cells provides a translational approach to HLA-match a limited number of third-party donors with a wide number of recipients.


Asunto(s)
Desoxirribonucleasas/genética , Eliminación de Gen , Antígenos HLA-A/genética , Trasplante de Células Madre Hematopoyéticas/etnología , Células Madre Hematopoyéticas/inmunología , Alelos , Animales , Desoxirribonucleasas/metabolismo , Selección de Donante/ética , Expresión Génica , Ingeniería Genética/métodos , Antígenos HLA-A/inmunología , Antígenos HLA-B/genética , Antígenos HLA-B/inmunología , Antígenos HLA-C/genética , Antígenos HLA-C/inmunología , Cadenas HLA-DRB1/genética , Cadenas HLA-DRB1/inmunología , Accesibilidad a los Servicios de Salud/ética , Trasplante de Células Madre Hematopoyéticas/ética , Células Madre Hematopoyéticas/citología , Prueba de Histocompatibilidad , Humanos , Ratones , Grupos Raciales , Trasplante Heterólogo , Trasplante Homólogo , Donante no Emparentado , Dedos de Zinc
15.
Clin Cancer Res ; 21(14): 3241-51, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25829402

RESUMEN

PURPOSE: The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. EXPERIMENTAL DESIGN: Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. RESULTS: We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. CONCLUSIONS: Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors.


Asunto(s)
Terapia Genética/métodos , Inmunoterapia Adoptiva/métodos , Melanoma/virología , Linfocitos T/trasplante , Proteínas Virales/inmunología , Animales , Ingeniería Genética/métodos , Humanos , Inmunohistoquímica , Melanoma/inmunología , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genética , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cancer Immunol Res ; 3(5): 473-82, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25711538

RESUMEN

T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy in Nanowell Grids (TIMING) to provide direct evidence that CD4(+)CAR(+) T cells (CAR4 cells) can engage in multikilling via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8(+)CAR(+) T cells (CAR8 cells) demonstrate that, although CAR4 cells can participate in killing and multikilling, they do so at slower rates, likely due to the lower granzyme B content. Significantly, in both sets of T cells, a minor subpopulation of individual T cells identified by their high motility demonstrated efficient killing of single tumor cells. A comparison of the multikiller and single-killer CAR(+) T cells revealed that the propensity and kinetics of T-cell apoptosis were modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation, and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR(+) T cells to participate in multikilling should be evaluated in the context of their ability to resist activation-induced cell death. We anticipate that TIMING may be used to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR(+) T cells with improved efficacy.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Receptores de Antígenos/inmunología , Línea Celular , Línea Celular Tumoral , Granzimas/inmunología , Humanos , Neoplasias/inmunología , Linfocitos T Citotóxicos/inmunología
17.
Cancer Res ; 75(17): 3505-18, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26330164

RESUMEN

Many tumors overexpress tumor-associated antigens relative to normal tissue, such as EGFR. This limits targeting by human T cells modified to express chimeric antigen receptors (CAR) due to potential for deleterious recognition of normal cells. We sought to generate CAR(+) T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies that differ in affinity. T cells with low-affinity nimotuzumab-CAR selectively targeted cells overexpressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high-affinity cetuximab-CAR was not affected by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from nonmalignant cells.


Asunto(s)
Antígenos de Neoplasias/inmunología , Receptores ErbB/inmunología , Neoplasias/inmunología , Receptores de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Línea Celular Tumoral , Cetuximab/administración & dosificación , Epítopos/inmunología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/biosíntesis , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia Adoptiva , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Receptores de Antígenos/uso terapéutico , Transducción de Señal , Linfocitos T/patología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Recent Results Cancer Res ; 159: 123-33, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11785836

RESUMEN

The Epstein-Barr virus (EBV)-associated lymphoproliferative disorders (LPD) that occur in individuals immunosuppressed by solid organ transplant (SOT) or T cell-depleted stem cell transplantation (SCT) are unequivocally a result of T cell dysfunction. Reconstitution of "at-risk" patients with EBV-specific cytotoxic T lymphocyte (CTL) lines that have been reactivated and expanded in vitro, should prevent the development of post-transplant lymphoproliferative disease or treat pre-existing disease. We have provided over 125 infusions of donor-derived EBV-specific CTL to 60 recipients of T cell-depleted stem cells. As prophylaxis, infusions were safe and effective, as no patient developed EBV-LPD, in contrast to 11.5% of controls who did not receive CTL. The CTL-reconstituted cellular immune responses to EBV, persisted for up to 80 months following infusion and reduced the high virus load seen in about 12% of patients. CTL were also effective in two of three patients who received CTL as treatment for fulminant disease. SOT recipients are also good candidates for CTL therapy, but present problems not seen in bone marrow transplant recipients. First the CTL product must be autologous, since the majority of tumors are recipient-derived and allogeneic CTL are unlikely to survive in vivo. Second most patients continue to receive immunosuppressive drugs, which may compromise the function of infused CTL. Third, unlike SCT recipients SOT recipients do not have an empty niche for EBV-specific CTL. Finally, standard protocols are not effective in generating CTL from seronegative recipients of EBV-carrying organs, who are the patients most at risk for the development of EBV-LPD. For CTL to be an option for the management of EBV in these patients, a sensitive and specific assay for the prediction of high-risk patients is required as well as an effective method for the generation of EBV-specific CTL from seronegative recipients.


Asunto(s)
Infecciones por Virus de Epstein-Barr/terapia , Herpesvirus Humano 4/inmunología , Linfoma/terapia , Complicaciones Posoperatorias/terapia , Linfocitos T Citotóxicos/trasplante , Línea Celular Transformada , Transformación Celular Viral , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Humanos , Inmunoterapia Adoptiva/métodos , Linfoma/inmunología , Linfoma/virología , Complicaciones Posoperatorias/inmunología , Complicaciones Posoperatorias/virología , Linfocitos T Citotóxicos/virología
19.
Curr Hematol Malig Rep ; 9(1): 50-6, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24488441

RESUMEN

T cells that have been genetically modified, activated, and propagated ex vivo can be infused to control tumor progression in patients who are refractory to conventional treatments. Early-phase clinical trials demonstrate that the tumor-associated antigen (TAA) CD19 can be therapeutically engaged through the enforced expression of a chimeric antigen receptor (CAR) on clinical-grade T cells. Advances in vector design, the architecture of the CAR molecule especially as associated with T-cell co-stimulatory pathways, and understanding of the tumor microenvironment, play significant roles in the successful treatment of medically fragile patients. However, some recipients of CAR(+) T cells demonstrate incomplete responses. Understanding the potential for treatment failure provides a pathway to improve the potency of adoptive transfer of CAR(+) T cells. High throughput single-cell analyses to understand the complexity of the inoculum coupled with animal models may provide insight into the therapeutic potential of genetically modified T cells. This review focuses on recent advances regarding the human application of CD19-specific CAR(+) T cells and explores how their success for hematologic cancers can provide a framework for investigational treatment of solid tumor malignancies.


Asunto(s)
Neoplasias Hematológicas/terapia , Inmunoterapia/métodos , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Antígenos CD19/inmunología , Ensayos Clínicos como Asunto , Ingeniería Genética , Neoplasias Hematológicas/inmunología , Humanos
20.
Sci Rep ; 4: 4502, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24675806

RESUMEN

Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-(64)Cu). This can now be potentially used for (64)Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR(+)SPION(pos) T cells effectively target in vitro CD19(+) lymphoma.


Asunto(s)
Imagen Molecular/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Traslado Adoptivo , Antígenos CD19/metabolismo , Supervivencia Celular , Rastreo Celular , Medios de Contraste , Electroporación , Humanos , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Unión Proteica , Radiofármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA