Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain ; 141(10): 2908-2924, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239641

RESUMEN

Accumulation and aggregation of TDP-43 is a major pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 inclusions also characterize patients with GGGGCC (G4C2) hexanucleotide repeat expansion in C9orf72 that causes the most common genetic form of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Functional studies in cell and animal models have identified pathogenic mechanisms including repeat-induced RNA toxicity and accumulation of G4C2-derived dipeptide-repeat proteins. The role of TDP-43 dysfunction in C9ALS/FTD, however, remains elusive. We found G4C2-derived dipeptide-repeat protein but not G4C2-RNA accumulation caused TDP-43 proteinopathy that triggered onset and progression of disease in Drosophila models of C9ALS/FTD. Timing and extent of TDP-43 dysfunction was dependent on levels and identity of dipeptide-repeat proteins produced, with poly-GR causing early and poly-GA/poly-GP causing late onset of disease. Accumulating cytosolic, but not insoluble aggregated TDP-43 caused karyopherin-α2/4 (KPNA2/4) pathology, increased levels of dipeptide-repeat proteins and enhanced G4C2-related toxicity. Comparable KPNA4 pathology was observed in both sporadic frontotemporal dementia and C9ALS/FTD patient brains characterized by its nuclear depletion and cytosolic accumulation, irrespective of TDP-43 or dipeptide-repeat protein aggregates. These findings identify a vicious feedback cycle for dipeptide-repeat protein-mediated TDP-43 and subsequent KPNA pathology, which becomes self-sufficient of the initiating trigger and causes C9-related neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/metabolismo , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/patología , Degeneración Nerviosa/metabolismo , alfa Carioferinas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Expansión de las Repeticiones de ADN , Drosophila , Proteínas de Drosophila/metabolismo , Retroalimentación Fisiológica , Demencia Frontotemporal/metabolismo , Humanos , Degeneración Nerviosa/patología
2.
Hum Mol Genet ; 22(8): 1539-57, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23307927

RESUMEN

Cytoplasmic accumulation and nuclear clearance of TDP-43 characterize familial and sporadic forms of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, suggesting that either loss or gain of TDP-43 function, or both, cause disease formation. Here we have systematically compared loss- and gain-of-function of Drosophila TDP-43, TAR DNA Binding Protein Homolog (TBPH), in synaptic function and morphology, motor control, and age-related neuronal survival. Both loss and gain of TBPH severely affect development and result in premature lethality. TBPH dysfunction caused impaired synaptic transmission at the larval neuromuscular junction (NMJ) and in the adult. Tissue-specific knockdown together with electrophysiological recordings at the larval NMJ also revealed that alterations of TBPH function predominantly affect pre-synaptic efficacy, suggesting that impaired pre-synaptic transmission is one of the earliest events in TDP-43-related pathogenesis. Prolonged loss and gain of TBPH in adults resulted in synaptic defects and age-related, progressive degeneration of neurons involved in motor control. Toxic gain of TBPH did not downregulate or mislocalize its own expression, indicating that a dominant-negative effect leads to progressive neurodegeneration also seen with mutational inactivation of TBPH. Together these data suggest that dysfunction of Drosophila TDP-43 triggers a cascade of events leading to loss-of-function phenotypes whereby impaired synaptic transmission results in defective motor behavior and progressive deconstruction of neuronal connections, ultimately causing age-related neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Drosophila melanogaster/genética , Degeneración Nerviosa/genética , Envejecimiento , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Larva , Degeneración Nerviosa/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Transmisión Sináptica/genética
3.
Hum Mol Genet ; 22(19): 3883-93, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23727833

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that are characterized by cytoplasmic aggregates and nuclear clearance of TAR DNA-binding protein 43 (TDP-43). Studies in Drosophila, zebrafish and mouse demonstrate that the neuronal dysfunction of TDP-43 is causally related to disease formation. However, TDP-43 aggregates are also observed in glia and muscle cells, which are equally affected in ALS and FTLD; yet, it is unclear whether glia- or muscle-specific dysfunction of TDP-43 contributes to pathogenesis. Here, we show that similar to its human homologue, Drosophila TDP-43, Tar DNA-binding protein homologue (TBPH), is expressed in glia and muscle cells. Muscle-specific knockdown of TBPH causes age-related motor abnormalities, whereas muscle-specific gain of function leads to sarcoplasmic aggregates and nuclear TBPH depletion, which is accompanied by behavioural deficits and premature lethality. TBPH dysfunction in glia cells causes age-related motor deficits and premature lethality. In addition, both loss and gain of Drosophila TDP-43 alter mRNA expression levels of the glutamate transporters Excitatory amino acid transporter 1 (EAAT1) and EAAT2. Taken together, our results demonstrate that both loss and gain of TDP-43 function in muscle and glial cells can lead to cytological and behavioural phenotypes in Drosophila that also characterize ALS and FTLD and identify the glutamate transporters EAAT1/2 as potential direct targets of TDP-43 function. These findings suggest that together with neuronal pathology, glial- and muscle-specific TDP-43 dysfunction may directly contribute to the aetiology and progression of TDP-43-related ALS and FTLD.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Musculares/metabolismo , Neuroglía/metabolismo , Envejecimiento , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/fisiopatología , Humanos , Larva , Ratones , Actividad Motora , Células Musculares/citología , Células Musculares/patología , Neuroglía/patología , Fenotipo
4.
Hum Mol Genet ; 21(12): 2698-712, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22398207

RESUMEN

Mitochondrial dysfunction is commonly observed in degenerative disorders, including Alzheimer's and Parkinson's disease that are characterized by the progressive and selective loss of neuronal subpopulations. It is currently unclear, however, whether mitochondrial dysfunction is primary or secondary to other pathogenic processes that eventually lead to age-related neurodegeneration. Here we establish an in vivo Drosophila model of mitochondrial dysfunction by downregulating the catalytic subunit of mitochondrial DNA (mtDNA) polymerase in cholinergic, serotonergic and dopaminergic neurons. The resulting flies are characterized by lowered respiratory chain activity, premature aging, age-related motor deficits as well as adult onset, progressive and cell-type-specific, dopaminergic neurodegeneration. Using this model, we find that associated lethality can be partially rescued by targeting PINK1/parkin signaling or Drp1, both of which have been implicated in mitochondrial dynamics and Parkinson's disease. Bypassing mitochondrial complex III/IV deficiencies with Alternative oxidase (AOX), however, fully restores ATP levels and prevents dopaminergic neurodegeneration. In contrast, ATP levels and neurodegeneration are not rescued when mitochondrial complex I deficiencies are bypassed with NADH-Q oxidoreductase. Our results demonstrate that mtDNA-mediated mitochondrial dysfunction can cause age-related and cell-type-specific neurodegeneration which AOX is able to alleviate and indicate that AOX or its surrogates may prove useful as a therapeutic tool for limiting respiratory chain deficiencies caused by mtDNA decline in healthy aging and neurodegenerative disease.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Adenosina Trifosfato/metabolismo , Envejecimiento/genética , Animales , Western Blotting , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Oxidorreductasas/genética , Proteínas de Plantas/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
5.
J Biol Chem ; 287(44): 36845-53, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22952235

RESUMEN

UCP1 catalyzes proton leak across the mitochondrial inner membrane to disengage substrate oxidation from ATP production. It is well established that UCP1 is activated by fatty acids and inhibited by purine nucleotides, but precisely how this regulation occurs remains unsettled. Although fatty acids can competitively overcome nucleotide inhibition in functional assays, fatty acids have little effect on purine nucleotide binding. Here, we present the first demonstration that fatty acids induce a conformational change in UCP1. Palmitate dramatically changed the binding kinetics of 2'/3'-O-(N-methylanthraniloyl)-GDP, a fluorescently labeled nucleotide analog, for UCP1. Furthermore, palmitate accelerated the rate of enzymatic proteolysis of UCP1. The altered kinetics of both processes indicate that fatty acids change the conformation of UCP1, reconciling the apparent discrepancy between existing functional and ligand binding data. Our results provide a framework for how fatty acids and nucleotides compete to regulate the activity of UCP1.


Asunto(s)
Canales Iónicos/química , Canales Iónicos/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Palmitatos/farmacología , Tejido Adiposo Pardo/citología , Animales , Unión Competitiva , Femenino , Colorantes Fluorescentes/metabolismo , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/metabolismo , Canales Iónicos/antagonistas & inhibidores , Cinética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Unión Proteica , Conformación Proteica , Proteolisis , Ratas , Ratas Wistar , Timo/citología , Tripsina/química , Proteína Desacopladora 1 , ortoaminobenzoatos/metabolismo
6.
Front Neurosci ; 4: 205, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21165178

RESUMEN

Drosophila models of Parkinson's disease are characterized by two principal phenotypes: the specific loss of dopaminergic (DA) neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analyzed the DA system and motor behavior in aging Drosophila. DA neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH > mCD8::GFP and cell type-specific MARCM clones revealed that DA neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, DA neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity, and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH > Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct DA behaviors in Drosophila. Moreover, DA neurons were maintained between early- and late life, as quantified by TH > mCD8::GFP and anti-TH labeling, indicating that adult onset, age-related degeneration of DA neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson's disease as well as other disorders affecting DA neurons and movement control.

7.
Exp Gerontol ; 44(5): 316-27, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19385039

RESUMEN

Uncoupling proteins (UCPs) can dissipate mitochondrial protonmotive force by increasing the proton conductance of the inner membrane and through this effect could decrease ROS production, ameliorate oxidative stress and extend lifespan. We investigated whether ubiquitous, pan-neuronal or neurosecretory cell-specific expression of human UCP3 (hUCP3) in adult Drosophila melanogaster affected lifespan. Low, ubiquitous expression of hUCP3 at levels found in rodent skeletal muscle mitochondria did not affect proton conductance in mitochondria isolated from whole flies, but high pan-neuronal expression of hUCP3 increased the proton conductance of mitochondria isolated from fly heads. Expression of hUCP3 at moderate levels in adult neurons led to a marginal lifespan-extension in males. However, high expression of hUCP3 in neuronal tissue shortened lifespan. The life-shortening effect was replicated when hUCP3 was expressed specifically in median neurosecretory cells (mNSC), which express three of the Drosophila insulin-like peptides (DILPs). Expression of hUCP3 in the mNSC did not alter expression of dilp2, dilp3 or dilp5 mRNA, but led to increased amounts of DILP2 in fly heads. These data suggest that lowering mitochondrial coupling by high expression of hUCP3 alters mNSC function in a way that appears to increase DILP-levels in fly heads and lead to a concomitant decrease in lifespan.


Asunto(s)
Envejecimiento/metabolismo , Drosophila/metabolismo , Células Secretoras de Insulina/metabolismo , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Envejecimiento/genética , Animales , Dípteros , Drosophila/genética , Humanos , Canales Iónicos/genética , Longevidad/genética , Masculino , Proteínas Mitocondriales/genética , Estrés Oxidativo , ARN Mensajero/genética , Especies Reactivas de Oxígeno , Transducción de Señal , Proteína Desacopladora 3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA