Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Respir Cell Mol Biol ; 70(5): 364-378, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38300138

RESUMEN

Various infections trigger a storm of proinflammatory cytokines in which IL-6 acts as a major contributor and leads to diffuse alveolar damage in patients. However, the metabolic regulatory mechanisms of IL-6 in lung injury remain unclear. Polyriboinosinic-polyribocytidylic acid [poly(I:C)] activates pattern recognition receptors involved in viral sensing and is widely used in alternative animal models of RNA virus-infected lung injury. In this study, intratracheal instillation of poly(I:C) with or without an IL-6-neutralizing antibody model was combined with metabonomics, transcriptomics, and so forth to explore the underlying molecular mechanisms of IL-6-exacerbated lung injury. We found that poly(I:C) increased the IL-6 concentration, and the upregulated IL-6 further induced lung ferroptosis, especially in alveolar epithelial type II cells. Meanwhile, lung regeneration was impaired. Mechanistically, metabolomic analysis showed that poly(I:C) significantly decreased glycolytic metabolites and increased bile acid intermediate metabolites that inhibited the bile acid nuclear receptor farnesoid X receptor (FXR), which could be reversed by IL-6-neutralizing antibody. In the ferroptosis microenvironment, IL-6 receptor monoclonal antibody tocilizumab increased FXR expression and subsequently increased the Yes-associated protein (YAP) concentration by enhancing PKM2 in A549 cells. FXR agonist GW4064 and liquiritin, a potential natural herbal ingredient as an FXR regulator, significantly attenuated lung tissue inflammation and ferroptosis while promoting pulmonary regeneration. Together, the findings of the present study provide the evidence that IL-6 promotes ferroptosis and impairs regeneration of alveolar epithelial type II cells during poly(I:C)-induced murine lung injury by regulating the FXR-PKM2-YAP axis. Targeting FXR represents a promising therapeutic strategy for IL-6-associated inflammatory lung injury.


Asunto(s)
Ferroptosis , Interleucina-6 , Pulmón , Poli I-C , Receptores Citoplasmáticos y Nucleares , Ferroptosis/efectos de los fármacos , Animales , Poli I-C/farmacología , Interleucina-6/metabolismo , Ratones , Receptores Citoplasmáticos y Nucleares/metabolismo , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Ratones Endogámicos C57BL , Masculino , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/tratamiento farmacológico , Humanos , Transducción de Señal/efectos de los fármacos
2.
Mol Cell Proteomics ; 17(2): 255-269, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29187519

RESUMEN

The eastern (Apis cerana cerana, Acc) and western (Apis mellifera ligustica, Aml) honeybee are two major honeybee species. Surprisingly, little is known about the fundamental molecular neurobiology of brain suborgans of Acc and Aml. We characterized and compared the proteomes of mushroom bodies (MBs), antennal lobes (ALs) and optical lobes (OLs) in the brain of both species, and biologically validated the functions related to learning and memory. Acc and Aml have evolved similar proteome signatures in MBs and OLs to drive the domain-specific neural activities. In MBs of both species, commonly enriched and enhanced functional groups related to protein metabolism and Ca2+ transport relative to ALs and OLs, suggests that proteins and Ca2+ are vital for consolidating learning and memory via modulation of synaptic structure and signal transduction. Furthermore, in OLs of both species, the mainly enriched ribonucleoside metabolism suggests its vital role as second messenger in promoting phototransduction. Notably, in ALs of both species, distinct proteome settings have shaped to prime olfactory learning and memory. In ALs of Acc, this is supported by the enriched cytoskeleton organization to sustain olfactory signaling through modulation of plasticity in glomeruli and intracellular transport. In ALs of Aml, however, the enriched functional groups implicated in hydrogen ion transport are indicative of their importance in supporting olfactory processes by regulation of synaptic transmission. The biological confirmation of enhanced activities of protein metabolism and signal transduction in ALs and MBs of Acc relative to in Aml demonstrates that a stronger sense of olfactory learning and memory has evolved in Acc. The reported first in-depth proteome data of honeybee brain suborgans provide a novel insight into the molecular basis of neurobiology, and is potentially useful for further neurological studies in honeybees and other insects.


Asunto(s)
Antenas de Artrópodos/metabolismo , Abejas , Proteínas de Insectos/metabolismo , Cuerpos Pedunculados/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Animales , Proteoma
3.
J Proteome Res ; 16(10): 3646-3663, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28879772

RESUMEN

The brain is a vital organ in regulating complex social behaviors of honeybees including learning and memory. Knowledge of how brain membrane proteins and their phosphorylation underlie the age-related behavioral polyethism is still lacking. A hitherto age-resolved brain membrane proteome and phosphoproteome were reported in adult worker bees from two strains of honeybee (Apis mellifera ligustica): Italian bee (ITB) and Royal Jelly bee (RJB), a line selected from ITB for increased RJ outputs over four decades. There were 1079 membrane protein groups identified, and 417 unique phosphosites were located in 179 membrane protein groups mainly phosphorylated by kinase families of MAPKs, CDKs, and CK2. Age-resolved dynamics of brain membrane proteome and phosphoproteome are indicative of their correlation with the neurobiological requirements during the adult life of honeybee workers. To stimulate immature brain cell development in newly emerged bees (NEBs), the enriched functional classes associated with metabolism of carbohydrates, nucleosides, and lipids by the up-regulated proteins suggest their enhanced role in driving cell maturity of the brain. In nurse bees (NBs) and forager bees (FBs), a higher number of membrane proteins and phosphoproteins were expressed as compared with in the young stages, and the enriched signal-transduction-related pathways by the up-regulated proteins suggest their significances in sustaining the intensive information processing during nursing and foraging activities. Notably, RJB has shaped unique membrane proteome and phosphoproteome settings to consolidate nursing and foraging behaviors in response to decades of selection underpinning the elevated RJ yields. In RJB NBs, the enriched pathways of phosphatidylinositol signaling and arachidonic acid metabolism indicate a stronger olfaction sensation in response to larval pheromone stimulation. In RJB FBs, the enriched pathways related to signal processing such as SNARE interactions in vesicular transport, wnt signaling, TGF-beta signaling, and taurine and hypotaurine metabolism suggest an enhanced nerve sensitivity to prime the stronger tendency to pollen collection. Our data gain a novel insight into membrane proteome and phosphoproteome-driven cerebral regulation of honeybee behaviors, which is potentially useful for further neurobiological investigation in both honeybees and other social insects.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/metabolismo , Fosfoproteínas/genética , Proteoma/genética , Animales , Abejas , Encéfalo/fisiología , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Feromonas/genética , Feromonas/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo
4.
J Proteome Res ; 15(9): 3342-57, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27517116

RESUMEN

The mandibular glands (MGs) of honeybee workers are vital for the secretion of lipids, for both larval nutrition and pheromones. However, knowledge of how the proteome controls MG development and functionality at the different physiological stages of worker bees is still lacking. We characterized and compared the proteome across different ages of MGs in Italian bees (ITBs) and Royal Jelly (RJ) bees (RJBs), the latter being a line bred for increasing RJ yield, originating from the ITB. All 2000 proteins that were shared by differently aged MGs in both bee lines (>4000 proteins identified in all) were strongly enriched in metabolizing protein, nucleic acid, small molecule, and lipid functional groups. The fact that these shared proteins are enriched in similar groups in both lines suggests that they are essential for basic cellular maintenance and MG functions. However, great differences were found when comparing the proteome across different MG phases in each line. In newly emerged bees (NEBs), the unique and highly abundant proteins were enriched in protein synthesis, cytoskeleton, and development related functional groups, suggesting their importance to initialize young MG development. In nurse bees (NBs), specific and highly abundant proteins were mainly enriched in substance transport and lipid synthesis, indicating their priority may be in priming high secretory activity in lipid synthesis as larval nutrition. The unique and highly abundant proteins in forager bees (FBs) were enriched in lipid metabolism, small molecule, and carbohydrate metabolism. This indicates their emphasis on 2-heptanone synthesis as an alarm pheromone to enhance colony defense or scent marker for foraging efficiency. Furthermore, a wide range of different biological processes was observed between ITBs and RJBs at different MG ages. Both bee stocks may adapt different proteome programs to drive gland development and functionality. The RJB nurse bee has reshaped its proteome by enhancing the rate of lipid synthesis and minimizing degradation to increase 10-hydroxy-2-decenoic acid synthesis, a major component of RJ, to maintain the desired proportion of lipids in increased RJ production. This study contributes a novel understanding of MG development and lipid metabolism, and a potential starting point for lipid or pheromone biochemists as well as developmental geneticists.


Asunto(s)
Abejas/metabolismo , Metabolismo de los Lípidos , Proteoma/análisis , Proteómica , Glándula Submandibular/crecimiento & desarrollo , Animales , Metabolismo de los Hidratos de Carbono , Proteínas de Insectos/análisis , Estadios del Ciclo de Vida , Feromonas , Especificidad de la Especie , Glándula Submandibular/metabolismo
5.
J Proteome Res ; 14(10): 4382-93, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26310634

RESUMEN

Neuropeptides play vital roles in orchestrating neural communication and physiological modulation in organisms, acting as neurotransmitters, neuromodulators, and neurohormones. The highly evolved social structure of honeybees is a good system for understanding how neuropeptides regulate social behaviors; however, much knowledge on neuropeptidomic variation in the age-related division of labor remains unknown. An in-depth comparison of the brain neuropeptidomic dynamics over four time points of age-related polyethism was performed on two strains of honeybees, the Italian bee (Apis mellifera ligustica, ITb) and the high royal jelly producing bee (RJb, selected for increasing royal jelly production for almost four decades from the ITb in China). Among the 158 identified nonredundant neuropeptides, 77 were previously unreported, significantly expanding the coverage of the honeybee neuropeptidome. The fact that 14 identical neuropeptide precursors changed their expression levels during the division of labor in both the ITb and RJb indicates they are highly related to task transition of honeybee workers. These observations further suggest the two lines of bees employ a similar neuropeptidome modification to tune their respective physiology of age polyethism via regulating excretory system, circadian clock system, and so forth. Noticeably, the enhanced level of neuropeptides implicated in regulating water homeostasis, brood pheromone recognition, foraging capacity, and pollen collection in RJb signify the fact that neuropeptides are also involved in the regulation of RJ secretion. These findings gain novel understanding of honeybee neuropeptidome correlated with social behavior regulation, which is potentially important in neurobiology for honeybees and other insects.


Asunto(s)
Envejecimiento/fisiología , Abejas/fisiología , Conducta Animal/fisiología , Proteínas de Insectos/aislamiento & purificación , Neuropéptidos/aislamiento & purificación , Proteoma/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Química Encefálica , Cromatografía Liquida , Relojes Circadianos/fisiología , Conducta Cooperativa , Ácidos Grasos/biosíntesis , Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Neuropéptidos/genética , Neuropéptidos/metabolismo , Feromonas/biosíntesis , Polen/química , Proteoma/genética , Proteoma/metabolismo , Especificidad de la Especie , Espectrometría de Masas en Tándem
6.
J Proteome Res ; 14(9): 4059-71, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26260241

RESUMEN

The worker and drone bees each contain a separate diploid and haploid genetic makeup, respectively. Mechanisms regulating the embryogenesis of the drone and its mechanistic difference with the worker are still poorly understood. The proteomes of the two embryos at three time-points throughout development were analyzed by applying mass spectrometry-based proteomics. We identified 2788 and 2840 proteins in the worker and drone embryos, respectively. The age-dependent proteome driving the drone embryogenesis generally follows the worker's. The two embryos however evolve a distinct proteome setting to prime their respective embryogenesis. The strongly expressed proteins and pathways related to transcriptional-translational machinery and morphogenesis at 24 h drone embryo relative to the worker, illustrating the earlier occurrence of morphogenesis in the drone than worker. These morphogenesis differences remain through to the middle-late stage in the two embryos. The two embryos employ distinct antioxidant mechanisms coinciding with the temporal-difference organogenesis. The drone embryo's strongly expressed cytoskeletal proteins signify key roles to match its large body size. The RNAi induced knockdown of the ribosomal protein offers evidence for the functional investigation of gene regulating of honeybee embryogenesis. The data significantly expand novel regulatory mechanisms governing the embryogenesis, which is potentially important for honeybee and other insects.


Asunto(s)
Abejas/embriología , Desarrollo Embrionario/fisiología , Proteínas de Insectos/análisis , Proteoma/análisis , Animales , Proteínas de Insectos/metabolismo , Proteínas de Insectos/fisiología , Mapas de Interacción de Proteínas/fisiología , Proteoma/metabolismo , Proteoma/fisiología , Proteómica
7.
J Proteome Res ; 14(12): 5327-40, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26496797

RESUMEN

Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological functions of RJ proteins for honeybee and medical communities.


Asunto(s)
Abejas/química , Ácidos Grasos/química , Glicoproteínas/química , Proteínas de Insectos/química , Secuencias de Aminoácidos , Animales , Antihipertensivos/química , Antihipertensivos/farmacología , Células Cultivadas , Glicopéptidos/química , Glicoproteínas/farmacología , Glicosilación , Humanos , Proteínas de Insectos/farmacología , Ratones , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Proteómica/métodos , Proteínas de Unión al ARN , Especificidad de la Especie
8.
J Proteome Res ; 13(12): 5928-43, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25265229

RESUMEN

The proteins in royal jelly (RJ) play a pivotal role in the nutrition, immune defense, and cast determination of honeybee larvae and have a wide range of pharmacological and health-promoting functions for humans as well. Although the importance of post-translational modifications (PTMs) in protein function is known, investigation of protein phosphorylation of RJ proteins is still very limited. To this end, two complementary phosphopeptide enrichment materials (Ti(4+)-IMAC and TiO2) and high-sensitivity mass spectrometry were applied to establish a detailed phosphoproteome map and to qualitatively and quantitatively compare the phosphoproteomes of RJ produced by Apis mellifera ligustica (Aml) and Apis cerana cerana (Acc). In total, 16 phosphoproteins carrying 67 phosphorylation sites were identified in RJ derived from western bees, and nine proteins phosphorylated on 71 sites were found in RJ produced by eastern honeybees. Of which, eight phosphorylated proteins were common to both RJ samples, and the same motif ([S-x-E]) was extracted, suggesting that the function of major RJ proteins as nutrients and immune agents is evolutionary preserved in both of these honeybee species. All eight overlapping phosphoproteins showed significantly higher abundance in Acc-RJ than in Aml-RJ, and the phosphorylation of Jelleine-II (an antimicrobial peptide, TPFKLSLHL) at S(6) in Acc-RJ had stronger antimicrobial properties than that at T(1) in Aml-RJ even though the overall antimicrobial activity of Jelleine-II was found to decrease after phosphorylation. The differences in phosphosites, peptide abundance, and antimicrobial activity of the phosphorylated RJ proteins indicate that the two major honeybee species employ distinct phosphorylation strategies that align with their different biological characteristics shaped by evolution. The phosphorylation of RJ proteins are potentially driven by the activity of extracellular serine/threonine protein kinase FAM20C-like protein (FAM20C-like) through the [S-x-E] motif, which is supported by evidence that mRNA and protein expression of FAM20C-like protein kinase are both found in the highest level in the hypopharyngeal gland of nurse bees. Our data represent the first comprehensive RJ phosphorylation atlas, recording patterns of phosphorylated RJ protein abundance and antibacterial activity of some RJ proteins in two major managed honeybee species. These data constitute a firm basis for future research to better understand the biological roles of each RJ protein for honeybee biology and human health care.


Asunto(s)
Abejas/metabolismo , Proteínas de Insectos/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Consenso , Ácidos Grasos , Femenino , Proteínas de Insectos/química , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Fosfopéptidos/química , Fosfopéptidos/farmacología , Fosfoproteínas/química , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma/química , Espectrometría de Masas en Tándem
9.
Front Pharmacol ; 13: 891802, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814249

RESUMEN

Background: Yu-ping-feng powder (YPF) is a compound traditional Chinese medicine extensively used in China for respiratory diseases. However, the role of YPF in alveolar-capillary barrier dysfunction remains unknown. This study aimed to explore the effect and potential mechanism of YPF on alveolar-capillary barrier injury induced by exhausted exercise. Methods: Male Sprague-Dawley rats were used to establish an exhausted-exercise model by using a motorized rodent treadmill. YPF at doses of 2.18 g/kg was administrated by gavage before exercise training for 10 consecutive days. Food intake-weight/body weight, blood gas analysis, lung water percent content, BALF protein concentration, morphological observation, quantitative proteomics, real-time PCR, and Western blot were performed. A rat pulmonary microvascular endothelial cell line (PMVEC) subjected to hypoxia was applied for assessing the related mechanism. Results: YPF attenuated the decrease of food intake weight/body weight, improved lung swelling and hemorrhage, alleviated the increase of lung water percent content and BALF protein concentration, and inhibited the impairment of lung morphology. In addition, YPF increased the expression of claudin 3, claudin 18, occludin, VE-cadherin, and ß-catenin, attenuated the epithelial and endothelial hyperpermeability in vivo and/or in vitro, and the stress fiber formation in PMVECs after hypoxia. Quantitative proteomics discovered that the effect of YPF implicated the Siah2-ubiquitin-proteasomal pathway, Gng12-PAK1-MLCK, and RhoA/ROCK, which was further confirmed by Western blot. Data are available via ProteomeXchange with identifier PXD032737. Conclusion: YPF ameliorated alveolar-capillary barrier injury induced by exhausted exercise, which is accounted for at least partly by the regulation of cytoskeleton.

10.
Biochim Biophys Acta Gene Regul Mech ; 1861(8): 743-751, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30012467

RESUMEN

Fertilization requires decondensation of promatine-condensed sperm chromatin, a dynamic process serving as an attractive system for the study of chromatin reprogramming. Nucleoplasmin is a key factor in regulating nucleosome assembly as a chaperone during fertilization process. However, knowledge on nucleoplasmin in chromatin formation remains elusive. Herein, magnetic tweezers (MT) and a chromatin assembly system were used to study the nucleoplasmin-mediated DNA decondensation/condensation at the single-molecular level in vitro. We found that protamine induces DNA condensation in a stepwise manner. Once DNA was condensed, nucleoplasmin, polyglutamic acid, and RNA could remove protamine from the DNA at different rates. The affinity binding of the different polyanions with protamine suggests chaperone-mediated chromatin decondensation activity occurs through protein-protein interactions. After decondensation, both RNA and polyglutamic acid prevented the transfer of histones onto the naked DNA. In contrast, nucleoplasmin is able to assist the histone transfer process, even though it carries the same negative charge as RNA and polyglutamic acid. These observations imply that the chaperone effects of nucleoplasmin during the decondensation/condensation process may be driven by specific spatial configuration of its acidic pentamer structure, rather than by electrostatic interaction. Our findings offer a novel molecular understanding of nucleoplasmin in sperm chromatin decondensation and subsequent developmental chromatin reprogramming at individual molecular level.


Asunto(s)
ADN/química , Nucleoplasminas/metabolismo , Animales , ADN/metabolismo , Histonas/metabolismo , Cinética , Ácido Poliglutámico/metabolismo , Protaminas/metabolismo , ARN/metabolismo , Resonancia por Plasmón de Superficie , Xenopus laevis
11.
Nat Commun ; 6: 7642, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26134419

RESUMEN

Ferric uptake regulator (Fur) plays a key role in the iron homeostasis of prokaryotes, such as bacterial pathogens, but the molecular mechanisms and structural basis of Fur-DNA binding remain incompletely understood. Here, we report high-resolution structures of Magnetospirillum gryphiswaldense MSR-1 Fur in four different states: apo-Fur, holo-Fur, the Fur-feoAB1 operator complex and the Fur-Pseudomonas aeruginosa Fur box complex. Apo-Fur is a transition metal ion-independent dimer whose binding induces profound conformational changes and confers DNA-binding ability. Structural characterization, mutagenesis, biochemistry and in vivo data reveal that Fur recognizes DNA by using a combination of base readout through direct contacts in the major groove and shape readout through recognition of the minor-groove electrostatic potential by lysine. The resulting conformational plasticity enables Fur binding to diverse substrates. Our results provide insights into metal ion activation and substrate recognition by Fur that suggest pathways to engineer magnetotactic bacteria and antipathogenic drugs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Unión al ADN/metabolismo , Hierro/metabolismo , Regiones Operadoras Genéticas , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Dicroismo Circular , Cristalización , Magnetospirillum , Microscopía Electrónica de Transmisión , Conformación Proteica , Pseudomonas aeruginosa , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/genética , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA