Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 181(2): 219-222, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302564

RESUMEN

Mounting evidence indicates that the nervous system plays a central role in cancer pathogenesis. In turn, cancers and cancer therapies can alter nervous system form and function. This Commentary seeks to describe the burgeoning field of "cancer neuroscience" and encourage multidisciplinary collaboration for the study of cancer-nervous system interactions.


Asunto(s)
Neoplasias/metabolismo , Sistema Nervioso/metabolismo , Humanos , Neurociencias
2.
Cell ; 155(4): 844-57, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209622

RESUMEN

Here, we show that a subset of breast cancers express high levels of the type 2 phosphatidylinositol-5-phosphate 4-kinases α and/or ß (PI5P4Kα and ß) and provide evidence that these kinases are essential for growth in the absence of p53. Knocking down PI5P4Kα and ß in a breast cancer cell line bearing an amplification of the gene encoding PI5P4K ß and deficient for p53 impaired growth on plastic and in xenografts. This growth phenotype was accompanied by enhanced levels of reactive oxygen species (ROS) leading to senescence. Mice with homozygous deletion of both TP53 and PIP4K2B were not viable, indicating a synthetic lethality for loss of these two genes. Importantly however, PIP4K2A(-/-), PIP4K2B(+/-), and TP53(-/-) mice were viable and had a dramatic reduction in tumor formation compared to TP53(-/-) littermates. These results indicate that inhibitors of PI5P4Ks could be effective in preventing or treating cancers with mutations in TP53.


Asunto(s)
Neoplasias de la Mama/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Respiración de la Célula , Senescencia Celular , Embrión de Mamíferos/metabolismo , Técnicas de Silenciamiento del Gen , Genes Letales , Xenoinjertos , Humanos , Ratones , Trasplante de Neoplasias , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
3.
Annu Rev Med ; 65: 157-70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24422570

RESUMEN

Therapeutic strategies designed to target cancer metabolism are an area of intense research. Antimetabolites, first used to treat patients in the early twentieth century, served as an early proof of concept for such therapies. We highlight strategies that attempt to improve on the anti-metabolite approach as well as new metabolic drug targets. Some of these targets have the advantage of a strong genetic anchor to drive patient selection (isocitrate dehydrogenase 1/2, Enolase 2). Additional approaches described here derive from hypothesis-driven and systems biology efforts designed to exploit tumor cell metabolic dependencies (fatty acid oxidation, nicotinamide adenine dinucleotide synthesis, glutamine biology).


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Biomarcadores de Tumor/genética , Proteínas de Unión al ADN/genética , Ácidos Grasos/metabolismo , Glutamina/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Metotrexato/uso terapéutico , NAD/metabolismo , Neoplasias/genética , Fosfopiruvato Hidratasa/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética
4.
Biochemistry ; 50(50): 10764-70, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22049910

RESUMEN

Glutaminase (GLS1/2) catalyzes the conversion of L-glutamine to L-glutamate and ammonia. The level of a splice variant of GLS1 (GAC) is elevated in certain cancers, and GAC is specifically inhibited by bis-2-(5-phenylacetimido-1,2,4,thiadiazol-2-yl)ethyl sulfide (BPTES). We report here the first full-length crystal structure of GAC in the presence and absence of BPTES molecules. Two BPTES molecules bind at an interface region of the GAC tetramer in a manner that appears to lock the GAC tetramer into a nonproductive conformation. The importance of these loops with regard to overall enzymatic activity of the tetramer was revealed by a series of GAC point mutants designed to create a BPTES resistant GAC.


Asunto(s)
Sitio Alostérico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Glutaminasa/antagonistas & inhibidores , Glutaminasa/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Biocatálisis , Bases de Datos de Proteínas , Dimerización , Glutaminasa/genética , Glutaminasa/metabolismo , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación Puntual , Conformación Proteica , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Sulfuros/química , Sulfuros/metabolismo , Tiadiazoles/química , Tiadiazoles/metabolismo
5.
J Lipid Res ; 51(7): 1971-81, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20181984

RESUMEN

Acyl-CoA:glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first step during de novo synthesis of glycerolipids. Mammals have at least four GPAT isoforms. Here we report the further characterization of the two recently identified microsomal GPAT3 and GPAT4. Both enzymes are highly expressed in adipose tissues. However, while GPAT3 is highly (approximately 60-fold) induced during adipocyte differentiation, GPAT4 induction is only modest (approximately 5-fold), leading to a lower abundance of GPAT4 mRNA in adipocytes. While overexpression of GPAT3 and GPAT4 in either insect or mammalian cells results in a comparable increase of GPAT activity, shRNA-mediated knockdown of GPAT3, but not GPAT4, in 3T3-L1 adipocytes led to a significant decrease in GPAT activity, a profound inhibition of lipid accumulation, and a lack of expression of several adipogenic markers during adipocyte differentiation. These data suggest that GPAT3 may encode the major GPAT isoform in adipocytes and play an important role in adipogenesis. Furthermore, we have shown that both GPAT3 and GPAT4 are phosphorylated by insulin at Ser and Thr residues, leading to increased GPAT activity that is sensitive to wortmannin. Our results reveal a link between the lipogenic effects of insulin and microsomal GPAT3 and GPAT4, implying their importance in glycerolipid biosynthesis.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Adipogénesis/fisiología , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Insulina/metabolismo , Isoenzimas/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/clasificación , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Células 3T3-L1 , Secuencia de Aminoácidos , Animales , Glicerol-3-Fosfato O-Aciltransferasa/clasificación , Glicerol-3-Fosfato O-Aciltransferasa/genética , Células Hep G2 , Humanos , Isoenzimas/clasificación , Isoenzimas/genética , Ratones , Datos de Secuencia Molecular , Fosforilación , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Alineación de Secuencia , Distribución Tisular
6.
Mol Cancer Ther ; 19(12): 2502-2515, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33082276

RESUMEN

Agents targeting metabolic pathways form the backbone of standard oncology treatments, though a better understanding of differential metabolic dependencies could instruct more rationale-based therapeutic approaches. We performed a chemical biology screen that revealed a strong enrichment in sensitivity to a novel dihydroorotate dehydrogenase (DHODH) inhibitor, AG-636, in cancer cell lines of hematologic versus solid tumor origin. Differential AG-636 activity translated to the in vivo setting, with complete tumor regression observed in a lymphoma model. Dissection of the relationship between uridine availability and response to AG-636 revealed a divergent ability of lymphoma and solid tumor cell lines to survive and grow in the setting of depleted extracellular uridine and DHODH inhibition. Metabolic characterization paired with unbiased functional genomic and proteomic screens pointed to adaptive mechanisms to cope with nucleotide stress as contributing to response to AG-636. These findings support targeting of DHODH in lymphoma and other hematologic malignancies and suggest combination strategies aimed at interfering with DNA-damage response pathways.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias Hematológicas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Pirimidinas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Dihidroorotato Deshidrogenasa , Genómica/métodos , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/etiología , Neoplasias Hematológicas/patología , Humanos , Estadificación de Neoplasias , Proteómica/métodos
7.
Curr Biol ; 14(8): 736-41, 2004 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-15084291

RESUMEN

The establishment and maintenance of cellular polarity are essential biological processes that must be maintained throughout the lifetime of eukaryotic organisms. The Par-1 protein kinases are key polarity determinants that have been conserved throughout evolution. Par-1 directs anterior-posterior asymmetry in the one-cell C. elegans embryo and the Drosophila oocyte. In mammalian cells, Par-1 may regulate epithelial cell polarity. Relevant substrates of Par-1 in these pathways are just being identified, but it is not yet known how Par-1 itself is regulated. Here, we demonstrate that human Par-1b (hPar-1b) interacts with and is negatively regulated by atypical PKC. hPar-1b is phosphorylated by aPKC on threonine 595, a residue conserved in Par-1 orthologs in mammals, worms, and flies. The equivalent site in hPar-1a, T564, is phosphorylated in vivo and by aPKC in vitro. Importantly, phosphorylation of hPar-1b on T595 negatively regulates the kinase activity and plasma membrane localization of hPar-1b in vivo. This study establishes a novel functional link between two central determinants of cellular polarity, aPKC and Par-1, and suggests a model by which aPKC may regulate Par-1 in polarized cells.


Asunto(s)
Polaridad Celular/fisiología , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Treonina/metabolismo , Western Blotting , Electroforesis en Gel de Poliacrilamida , Fluorescencia , Células HeLa , Humanos , Fosfopéptidos/metabolismo , Fosforilación , Plásmidos/genética , Pruebas de Precipitina , Proteína Quinasa C/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Estructura Terciaria de Proteína , Transfección
8.
Chem Biol ; 21(9): 1143-61, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25237859

RESUMEN

Cancer cells must carefully regulate their metabolism to maintain growth and division under varying nutrient and oxygen levels. Compelling data support the investigation of numerous enzymes as therapeutic targets to exploit metabolic vulnerabilities common to several cancer types. We discuss the rationale for developing such drugs and review three targets with central roles in metabolic pathways crucial for cancer cell growth: pyruvate kinase muscle isozyme splice variant 2 (PKM2) in glycolysis, glutaminase in glutaminolysis, and mutations in isocitrate dehydrogenase 1 and 2 isozymes (IDH1/2) in the tricarboxylic acid cycle. These targets exemplify the drugging approach to cancer metabolism, with allosteric modulation being the common theme. The first glutaminase and mutant IDH1/2 inhibitors have entered clinical testing, and early data are promising. Cancer metabolism provides a wealth of novel targets, and targeting allosteric sites promises to yield selective drugs with the potential to transform clinical outcomes across many cancer types.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Antineoplásicos/uso terapéutico , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Glutaminasa/antagonistas & inhibidores , Glutaminasa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
9.
PLoS One ; 9(12): e115144, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25502225

RESUMEN

Recent work has highlighted glutaminase (GLS) as a key player in cancer cell metabolism, providing glutamine-derived carbon and nitrogen to pathways that support proliferation. There is significant interest in targeting GLS for cancer therapy, although the gene is not known to be mutated or amplified in tumors. As a result, identification of tractable markers that predict GLS dependence is needed for translation of GLS inhibitors to the clinic. Herein we validate a small molecule inhibitor of GLS and show that non-small cell lung cancer cells marked by low E-cadherin and high vimentin expression, hallmarks of a mesenchymal phenotype, are particularly sensitive to inhibition of the enzyme. Furthermore, lung cancer cells induced to undergo epithelial to mesenchymal transition (EMT) acquire sensitivity to the GLS inhibitor. Metabolic studies suggest that the mesenchymal cells have a reduced capacity for oxidative phosphorylation and increased susceptibility to oxidative stress, rendering them unable to cope with the perturbations induced by GLS inhibition. These findings elucidate selective metabolic dependencies of mesenchymal lung cancer cells and suggest novel pathways as potential targets in this aggressive cancer type.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Glutaminasa/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Estrés Oxidativo/efectos de los fármacos , Sulfuros/farmacología , Tiadiazoles/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Transición Epitelial-Mesenquimal , Estudios de Asociación Genética , Glutaminasa/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Terapia Molecular Dirigida
10.
Mol Cell Biol ; 30(21): 5043-56, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20733003

RESUMEN

Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a(-/-) but not in control or Par-1b(-/-) mice. The intercrossing of Par-1a(-/-) with Par-1b(-/-) mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a(-/-) mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b(-/-) mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.


Asunto(s)
Adiposidad/fisiología , Hígado Graso/prevención & control , Gluconeogénesis/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Adiposidad/genética , Alelos , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Cruzamientos Genéticos , Cartilla de ADN/genética , Grasas de la Dieta/administración & dosificación , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Hígado Graso/enzimología , Hígado Graso/genética , Femenino , Gluconeogénesis/genética , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Noqueados , Obesidad/enzimología , Obesidad/genética , Obesidad/prevención & control , Fenotipo , Embarazo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Inanición/enzimología , Inanición/genética , Inanición/fisiopatología
11.
Cell Cycle ; 6(16): 1966-9, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17721078

RESUMEN

The Par-1 protein kinases are conserved from yeast to man and belong to a subfamily of kinases that includes the energy sensor and metabolic regulator, AMPK. Par-1 is regulated by LKB1 and atypical PKC and has been shown in multiple organisms and cell types to be critical for regulation of cellular polarity. Recent studies using knockout mice have revealed several surprising physiological functions for Par-1b/MARK2/EMK1. Our recent study shows that Par-1b regulates metabolic rate, adiposity and insulin sensitivity. This is the first study to implicate these kinases in metabolic functions akin to those previously defined for AMPK. Conversely, another series of recent publications now implicate AMPK in regulation of polarity. Here we discuss the metabolic phenotype seen in Par-1b deficient mice and the synthesis of several findings that link Par-1 and AMPK to a degree that has not been previously appreciated.


Asunto(s)
Polaridad Celular/fisiología , Metabolismo Energético/fisiología , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Secuencia de Aminoácidos , Animales , Polaridad Celular/genética , Metabolismo Energético/genética , Humanos , Complejos Multienzimáticos/genética , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Homología de Secuencia de Aminoácido
12.
Proc Natl Acad Sci U S A ; 104(13): 5680-5, 2007 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-17372192

RESUMEN

Obesity is a major factor central to the development of insulin resistance and type 2 diabetes. The identification and characterization of genes involved in regulation of adiposity, insulin sensitivity, and glucose uptake are key to the design and development of new drug therapies for this disease. In this study, we show that the polarity kinase Par-1b/MARK2 is required for regulating glucose metabolism in vivo. Mice null for Par-1b were lean, insulin hypersensitive, resistant to high-fat diet-induced weight gain, and hypermetabolic. (18)F-FDG microPET and hyperinsulinemic-euglycemic clamp analyses demonstrated increased glucose uptake into white and brown adipose tissue, but not into skeletal muscle of Par-1b null mice relative to wild-type controls. Taken together, these data indicate that Par-1b is a regulator of glucose metabolism and adiposity in the whole animal and may be a valuable drug target for the treatment of both type 2 diabetes and obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Adiposidad/genética , Proteínas de Ciclo Celular/fisiología , Regulación de la Expresión Génica , Resistencia a la Insulina/genética , Insulina/metabolismo , Obesidad/genética , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Femenino , Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Tiempo
13.
Blood ; 107(10): 3868-75, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16434494

RESUMEN

To produce blood platelets, megakaryocytes elaborate proplatelets, accompanied by expansion of membrane surface area and dramatic cytoskeletal rearrangements. The invaginated demarcation membrane system (DMS), a hallmark of mature cells, has been proposed as the source of proplatelet membranes. By direct visualization of labeled DMS, we demonstrate that this is indeed the case. Late in megakaryocyte ontogeny, the DMS gets loaded with PI-4,5-P(2), a phospholipid that is confined to plasma membranes in other cells. Appearance of PI-4,5-P(2) in the DMS occurs in proximity to PI-5-P-4-kinase alpha (PIP4Kalpha), and short hairpin (sh) RNA-mediated loss of PIP4Kalpha impairs both DMS development and expansion of megakaryocyte size. Thus, PI-4,5-P(2) is a marker and possibly essential component of internal membranes. PI-4,5-P(2) is known to promote actin polymerization by activating Rho-like GTPases and Wiskott-Aldrich syndrome (WASp) family proteins. Indeed, PI-4,5-P(2) in the megakaryocyte DMS associates with filamentous actin. Expression of a dominant-negative N-WASp fragment or pharmacologic inhibition of actin polymerization causes similar arrests in proplatelet formation, acting at a step beyond expansion of the DMS and cell mass. These observations collectively suggest a signaling pathway wherein PI-4,5-P(2) might facilitate DMS development and local assembly of actin fibers in preparation for platelet biogenesis.


Asunto(s)
Megacariocitos/fisiología , Trombopoyesis , Animales , Proteínas Bacterianas/genética , Membrana Celular/fisiología , Citometría de Flujo , Proteínas Luminiscentes/genética , Megacariocitos/citología , Megacariocitos/virología , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Plásmidos , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/genética , Retroviridae/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA