Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Hematol ; 99(8): 1532-1539, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38747543

RESUMEN

Smoldering multiple myeloma (SMM) is a precursor stage that precedes multiple myeloma (MM). SMM is heterogenous with nearly 40% of patients progressing to MM in the first 5 years. The high rate of progression of SMM patients highlights the need for early intervention, which underscores the importance of identifying SMM patients with the highest risk of progression. Several risk stratification models showed utility in identifying high-risk SMM patients; however, these systems showed limited sensitivity. To date, identifying high-risk SMM patients remains an important clinical need. In this study, we present the 3-dimensional telomere profiling as a structural biomarker capable of stratifying SMM patients as a function of genomic instability. Quantifying telomere dysfunction using the TeloView technology showed utility in risk stratification of cancer patients, particularly hematological malignancies. In this study, we analyzed 168 SMM patients. We report an AUC in ROC analysis of 0.8 using a subset of the patients as a training dataset. We then conducted a blind validation on a different cohort and demonstrated a positive predictive value of 85% and negative predictive value of 73%, with sensitivity and specificity of 83% and 76%, respectively. We examined the correlation between the TeloView prediction and the 20-2-20 scoring system, and cytogenetic abnormalities. We report a correlation of 53% with the 20-2-20 scores and over 60% correlation with cytogenetic abnormalities. The result of this study presents the telomere profiling as an effective biomarker able to stratify SMM patients to their respective risk groups with high sensitivity and specificity.


Asunto(s)
Progresión de la Enfermedad , Mieloma Múltiple Quiescente , Telómero , Humanos , Mieloma Múltiple Quiescente/genética , Mieloma Múltiple Quiescente/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Mieloma Múltiple/genética , Mieloma Múltiple/diagnóstico , Valor Predictivo de las Pruebas
2.
Genes Dev ; 30(9): 1047-57, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27125673

RESUMEN

Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans' life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Alimentos , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Insulina/genética , Longevidad/genética , Hormonas Peptídicas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Señales (Psicología) , Ambiente , Factores de Transcripción Forkhead/metabolismo , Insulina/metabolismo , Optogenética , Hormonas Peptídicas/metabolismo , Células Receptoras Sensoriales/fisiología , Transducción de Señal
3.
Genome Biol Evol ; 15(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36575057

RESUMEN

The red flour beetle Tribolium castaneum is a resource-rich model for genomic and developmental studies. To extend previous studies on Tribolium eye development, we produced transcriptomes for normal-eyed and eye-depleted heads of pupae and adults to identify differentially transcript-enriched (DE) genes in the visual system. Unexpectedly, cuticle-related genes were the largest functional class in the pupal compound eye DE gene population, indicating differential enrichment in three distinct cuticle components: clear lens facet cuticle, highly melanized cuticle of the ocular diaphragm, which surrounds the Tribolium compound eye for internal fortification, and newly identified facet margins of the tanned cuticle, possibly enhancing external fortification. Phylogenetic, linkage, and high-throughput gene knockdown data suggest that most cuticle proteins (CPs) expressed in the Tribolium compound eye stem from the deployment of ancient CP genes. Consistent with this, TcasCPR15, which we identified as the major lens CP gene in Tribolium, is a beetle-specific but pleiotropic paralog of the ancient CPR RR-2 CP gene family. The less abundant yet most likely even more lens-specific TcasCP63 is a member of a sprawling family of noncanonical CP genes, documenting a role of local gene family expansions in the emergence of the Tribolium compound eye CP repertoire. Comparisons with Drosophila and the mosquito Anopheles gambiae reveal a steady turnover of lens-enriched CP genes during insect evolution.


Asunto(s)
Tribolium , Animales , Tribolium/genética , Filogenia , Perfilación de la Expresión Génica , Transcriptoma , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Interferencia de ARN
4.
J Exp Zool B Mol Dev Evol ; 318(5): 368-87, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22711569

RESUMEN

Functional studies of the methuselah/methuselah-like (mth/mthl) gene family have focused on the founding member mth, but little is known regarding the developmental functions of this receptor or any of its paralogs. We undertook a comprehensive analysis of developmental expression and sequence divergence in the mth/mthl gene family. Using in situ hybridization techniques, we detect expression of six genes (mthl1, 5, 9, 11, 13, and 14) in the embryo during gastrulation and development of the gut, heart, and lymph glands. Four receptors (mthl3, 4, 6, and 8) are expressed in the larval central nervous system, imaginal discs, or both, and two receptors (mthl10 and mth) are expressed in both embryos and larvae. Phylogenetic analysis of all mth/mthl genes in five Drosophila species, mosquito and flour beetle structured the mth/mthl family into several subclades. mthl1, 5, and 14 are present in most species, each forming a separate clade. A newly identified Drosophila mthl gene (CG31720; herein mthl15) formed another ancient clade. The remaining Drosophila receptors, including mth, are members of a large "superclade" that diversified relatively recently during dipteran evolution, in many cases within the melanogaster subgroup. Comparing the expression patterns of the mth/mthl "superclade" paralogs to the embryonic expression of the singleton ortholog in Tribolium suggests both subfunctionalization and acquisition of novel functionalities. Taken together, our findings shed novel light on mth as a young member of an adaptively evolving developmental gene family.


Asunto(s)
Adaptación Biológica/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/genética , Familia de Multigenes/genética , Filogenia , Receptores Acoplados a Proteínas G/genética , Adaptación Biológica/fisiología , Animales , Teorema de Bayes , Biología Computacional , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Modelos Genéticos , Especificidad de la Especie
5.
Environ Toxicol Chem ; 39(2): 381-395, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31721268

RESUMEN

Melanophores are pigmented cells that change the distribution of melanosomes, enabling animals to appear lighter or darker for camouflage, thermoregulation, and protection from ultraviolet radiation. A complex series of hormonal and neural mechanisms regulates melanophore pigment distribution, making these dynamic cells a valuable tool to screen toxicants as they rapidly respond to changes in the environment. We found that maltol, a naturally occurring flavor enhancer and fragrance agent, induces melanophore pigment aggregation in a dose-dependent manner in Xenopus laevis tadpoles. To determine if maltol affects camouflage adaptation, we placed tadpoles into maltol baths situated over either a white or a black background. Maltol induced pigment aggregation in a similar dose-dependent pattern regardless of background color. We also tested how maltol treatment compares to melatonin treatment and found that the degree of pigment aggregation induced by maltol is similar to treatment with melatonin but that maltol induces over a much longer time course. Last, maltol had no effect on mRNA expression in the brain of genes that regulate camouflage-related pigment aggregation. The present results suggest that maltol does not exert its effects via the camouflage adaptation mechanism or via melatonin-related mechanisms. These results are the first to identify a putative toxicological effect of maltol exposure in vivo and rule out several mechanisms by which maltol may exert its effects on pigment aggregation. Environ Toxicol Chem 2020;39:381-395. © 2019 SETAC.


Asunto(s)
Duramadre/efectos de los fármacos , Aromatizantes/toxicidad , Larva/efectos de los fármacos , Melanóforos/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Pironas/toxicidad , Piel/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Duramadre/citología , Duramadre/metabolismo , Aromatizantes/metabolismo , Expresión Génica/efectos de los fármacos , Larva/genética , Larva/metabolismo , Larva/efectos de la radiación , Melanóforos/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Pigmentación/efectos de los fármacos , Pironas/metabolismo , Piel/citología , Piel/metabolismo , Pruebas de Toxicidad , Rayos Ultravioleta , Xenopus laevis
6.
Front Physiol ; 10: 857, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333499

RESUMEN

The conditions that animals experience during early development can have profound consequences for health and fitness. In birds, one of the most important aspects of development is egg incubation temperature. A small decrease in average temperature leads to various impacts on offspring phenotype, such as smaller body sizes, slower growth rates, and less efficient metabolic activity. Little is known, however, about the proximate mechanisms underlying these incubation temperature-induced phenotypic changes. Two important hormones which could play a proximate role are thyroid hormone and corticosterone, which mobilize stored energy reserves and coordinate the normal growth of tissues, particularly in the brain. Previous research shows that circulating blood concentrations of both hormones are influenced by incubation temperature, but the mechanism by which incubation temperature may lead to these changes is unknown. We hypothesized that incubation temperature induces changes in thyroid hormone and corticosterone regulation, leading to changes in expression of hormone-sensitive genes in the brain. To test this, we incubated wood duck (Aix sponsa) eggs at three different temperatures within the natural range (35.0, 35.8, and 37.0°C). We measured mRNA expression of thyroid hormone-related neuroendocrine endpoints (deiodinase 2/3, thyroid hormone receptor α/ß, neural regeneration related protein, and Krueppel-like factor 9) in newly hatched ducklings and corticosterone-related neuroendocrine endpoints (mineralocorticoid receptor, glucocorticoid receptor, cholecystokinin, and brain-derived neurotrophic factor) in 15 day-old ducklings using qPCR on brain tissue from the hippocampus and hypothalamus. Contrary to our predictions, we found that mRNA expression of thyroid hormone-related endpoints in both brain areas were largely unaffected by incubation temperature, although there was a trend for an inverse relationship between mRNA expression and incubation temperature for several genes in the hypothalamus. We also found that mineralocorticoid receptor mRNA expression in the hypothalamus was lower in ducklings incubated at the low relative to the high temperatures. This study is the first to evaluate the effects of incubation temperature on mRNA expression of neuroendocrine endpoints in the developing avian brain and suggests that these particular endpoints may be largely resistant to changes in incubation temperature. Thus, further research into the proximate mechanisms for incubation temperature-induced developmental plasticity is needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA