RESUMEN
Predators display rhythms in behavior and habitat use, often with the goal of maximizing foraging success. The underlying mechanisms behind these rhythms are generally linked to abiotic conditions related to diel, lunar, or seasonal cycles. To understand their effects on the space use, activity, and swimming depth of gray reef sharks (Carcharhinus amblyrhynchos), we tagged 38 individuals with depth and accelerometer sensors in a French Polynesian atoll channel exposed to strong tidal flow, and monitored them over a year. C. amblyrhynchos used a larger space during nighttime and were more active at night and during outgoing currents. Shark activity also peaked during the full and new moons. The swimming depth of sharks was mostly influenced by diel cycles, with sharks swimming deeper during the day compared to nighttime. The dynamic energyscape may promote the emergence of discrete behavioral strategies in reef sharks that use the south channel of Fakarava for resting and foraging purposes. Turbulence imposed by outgoing tides induces additional foraging cost on sharks, shifting their hunting areas to the southern part of the channel, where turbulence is less pronounced. Understanding when and where sharks are active and foraging is important for our understanding of predator-prey dynamics and ecosystem dynamics. This study highlights how abiotic rhythms in a highly dynamic environment likely generate spatiotemporal heterogeneity in the distribution of predation pressure.
RESUMEN
Estimates of abundance are essential to manage and conserve marine species. Numerous methods are available to determine population size, but the suitability of methods for schooling fishes and the associated precision can vary depending on the species and system. Here, we developed and compared three mark-recapture/resight methods to assess the most robust method to estimate the abundance of silver trevally (Pseudocaranx georgianus). While the recapture rate was similar across the methods, the swim pass method (resighting) recorded the largest number of individuals (mean ± standard error 211 ± 14.9) and had the lowest coefficient of variation (CV; 4.5%-12%) compared to 360-video (resighting, 45 ± 2.1 individuals surveyed, 14.8%-22.2% CV) and large-scale capture methods (recapture, 30 ± 3.8 individuals surveyed, 17.3%-26.5% CV). The inclusion of individual identification into the abundance estimator models for large-scale capture did not change the abundance estimates and showed similar resolution between the models (CV 18.2%-26.7%). We showed that the swim pass method is logistically easy to implement and generates precise estimates of silver trevally abundance. This new method provides a low-cost, time-efficient resighting method that can be adapted to suit similar aggregating pelagic species interacting with wildlife tourism operations, enabling researchers to rapidly estimate the abundance of species that have been previously difficult to count.
RESUMEN
AbstractUnifying models have shown that the amount of space used by animals (e.g., activity space, home range) scales allometrically with body mass for terrestrial taxa; however, such relationships are far less clear for marine species. We compiled movement data from 1,596 individuals across 79 taxa collected using a continental passive acoustic telemetry network of acoustic receivers to assess allometric scaling of activity space. We found that ectothermic marine taxa do exhibit allometric scaling for activity space, with an overall scaling exponent of 0.64. However, body mass alone explained only 35% of the variation, with the remaining variation best explained by trophic position for teleosts and latitude for sharks, rays, and marine reptiles. Taxon-specific allometric relationships highlighted weaker scaling exponents among teleost fish species (0.07) than sharks (0.96), rays (0.55), and marine reptiles (0.57). The allometric scaling relationship and scaling exponents for the marine taxonomic groups examined were lower than those reported from studies that had collated both marine and terrestrial species data derived using various tracking methods. We propose that these disparities arise because previous work integrated summarized data across many studies that used differing methods for collecting and quantifying activity space, introducing considerable uncertainty into slope estimates. Our findings highlight the benefit of using large-scale, coordinated animal biotelemetry networks to address cross-taxa evolutionary and ecological questions.
Asunto(s)
Organismos Acuáticos , Peces , Animales , Fenómenos de Retorno al Lugar HabitualRESUMEN
Although pervasive, the effects of climate change vary regionally, possibly resulting in differential behavioral, physiological, and/or phenotypic responses among populations within broadly distributed species. Juvenile Port Jackson sharks (Heterodontus portusjacksoni) from eastern and southern Australia were reared at their current (17.6 °C Adelaide, South Australia [SA]; 20.6 °C Jervis Bay, New South Wales [NSW]) or projected end-of-century (EOC) temperatures (20.6 °C Adelaide, SA; 23.6 °C Jervis Bay, NSW) and assessed for morphological features of skeletal muscle tissue. Nearly all skeletal muscle properties including cellularity, fiber size, myonuclear domain, and satellite cell density did not differ between locations and thermal regimes. However, capillary density was significantly influenced by thermal treatment, where Adelaide sharks raised at current temperatures had a lower capillarity than Jervis Bay sharks raised at ambient or projected EOC temperatures. This may indicate higher metabolic costs at elevated temperatures. However, our results suggest that regardless of the population, juvenile Port Jackson sharks may have limited acclimatory potential to alter muscle metabolic features under a temperature increase, which may make this species vulnerable to climate change.
Asunto(s)
Tiburones , Animales , Tiburones/fisiología , Temperatura , Músculo Esquelético/metabolismoRESUMEN
Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.
Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históricamente han removido a individuos de gran tamaño, potencialmente perjudicando el funcionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación de estos indicadores a grandes (inter-ecosistemas) escalas geográficas ha estado limitada a datos de captura dependientes de las pesquerías o métodos basados en el buceo restringidos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo (stereo-BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino, la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abundancia de los peces que están por encima del tamaño legal, aunque el efecto varió según el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados de mejor manera usando gradientes de la temperatura de la superficie marina (media y varianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la complejidad marina, las regiones con una huella humana reducida y las reservas marinas de protección total para la protección de los peces de gran tamaño corporal en una extensa gama de especies y configuraciones ecosistémicas. Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño Corporal de Especies Marinas Capturadas para la Pesca.
Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Australia , Tamaño Corporal , Explotaciones Pesqueras , Peces , HumanosRESUMEN
Many species with broad distributions are exposed to different thermal regimes which often select for varied phenotypes. This intraspecific variation is often overlooked but may be critical in dictating the vulnerability of different populations to environmental change. We reared Port Jackson shark (Heterodontus portusjacksoni) eggs from two thermally discrete populations (i.e. Jervis Bay and Adelaide) under each location's present-day mean temperatures, predicted end-of-century temperatures and under reciprocal-cross conditions to establish intraspecific thermal sensitivity. Rearing temperatures strongly influenced MO2 Max and critical thermal limits, regardless of population, indicative of acclimation processes. However, there were significant population-level effects, such that Jervis Bay sharks, regardless of rearing temperature, did not exhibit differences in MO2 Rest , but under elevated temperatures exhibited reduced maximum swimming activity with step-wise increases in temperature. In contrast, Adelaide sharks reared under elevated temperatures doubled their MO2 Rest , relative to their present-day temperature counterparts; however, maximum swimming activity was not influenced. With respect to reciprocal-cross comparisons, few differences were detected between Jervis Bay and Adelaide sharks reared under ambient Jervis Bay temperatures. Similarly, juveniles (from both populations) reared under Adelaide conditions had similar thermal limits and swimming activity (maximum volitional velocity and distance) to each other, indicative of conserved acclimation capacity. However, under Adelaide temperatures, the MO2 Rest of Jervis Bay sharks was greater than that of Adelaide sharks. This indicates that the energetics of cooler water population (Adelaide) is likely more thermally sensitive than that of the warmer population (Jervis Bay). While unique to elasmobranchs, these data provide further support that by treating species as static, homogeneous populations, we ignore the impacts of thermal history and intraspecific variation on thermal sensitivity. With climate change, intraspecific variation will manifest as populations move, demographics change or extirpations occur, starting with the most sensitive populations.
Asunto(s)
Cambio Climático , Tiburones , Aclimatación , Animales , Natación , TemperaturaRESUMEN
Marine reserves are a key tool for the conservation of marine biodiversity, yet only ~2.5% of the world's oceans are protected. The integration of marine reserves into connected networks representing all habitats has been encouraged by international agreements, yet the benefits of this design has not been tested empirically. Australia has one of the largest systems of marine reserves, providing a rare opportunity to assess how connectivity influences conservation success. An Australia-wide dataset was collected using baited remote underwater video systems deployed across a depth range from 0 to 100 m to assess the effectiveness of marine reserves for protecting teleosts subject to commercial and recreational fishing. A meta-analytical comparison of 73 fished species within 91 marine reserves found that, on average, marine reserves had 28% greater abundance and 53% greater biomass of fished species compared to adjacent areas open to fishing. However, benefits of protection were not observed across all reserves (heterogeneity), so full subsets generalized additive modelling was used to consider factors that influence marine reserve effectiveness, including distance-based and ecological metrics of connectivity among reserves. Our results suggest that increased connectivity and depth improve the aforementioned marine reserve benefits and that these factors should be considered to optimize such benefits over time. We provide important guidance on factors to consider when implementing marine reserves for the purpose of increasing the abundance and size of fished species, given the expected increase in coverage globally. We show that marine reserves that are highly protected (no-take) and designed to optimize connectivity, size and depth range can provide an effective conservation strategy for fished species in temperate and tropical waters within an overarching marine biodiversity conservation framework.
Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Australia , Ecosistema , Explotaciones Pesqueras , Peces , Océanos y MaresRESUMEN
An animal's energy landscape considers the power requirements associated with residing in or moving through habitats. Within marine environments, these landscapes can be dynamic as water currents will influence animal power requirements and can change rapidly over diel and tidal cycles. In channels and along slopes with strong currents, updraft zones may reduce energy expenditure of negatively buoyant fishes that are also obligate swimmers. Despite marine predators often residing within high-current area, no study has investigated the potential role of the energetic landscape in driving such habitat selectivity. Over 500 grey reef sharks Carcharhinus amblyrhynchos reside in the southern channel of Fakarava Atoll, French Polynesia. We used diver observations, acoustic telemetry and biologging to show that sharks use regions of predicted updrafts and switch their core area of space use based on tidal state (incoming versus outgoing). During incoming tides, sharks form tight groups and display shuttling behaviour (moving to the front of the group and letting the current move them to the back) to maintain themselves in these potential updraft zones. During outgoing tides, group dispersion increases, swimming depths decrease and shuttling behaviours cease. These changes are likely due to shifts in the nature and location of the updraft zones, as well as turbulence during outgoing tides. Using a biomechanical model, we estimate that routine metabolic rates for sharks may be reduced by 10%-15% when in updraft zones. Grey reef sharks save energy using predicted updraft zones in channels and 'surfing the slope'. Analogous to birds using wind-driven updraft zones, negatively buoyant marine animals may use current-induced updraft zones to reduce energy expenditure. Updrafts should be incorporated into dynamic energy landscapes and may partially explain the distribution, behaviour and potentially abundance of marine predators.
Asunto(s)
Tiburones , Animales , Arrecifes de Coral , Ecosistema , Metabolismo Energético , TelemetríaRESUMEN
COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.
RESUMEN
Following a lack of detected change in white shark Carcharodon carcharias L. 1758 diet and nutritional condition attributed to the interaction with the cage-diving industry, Lusseau and Derous (Tourism Management, 2019, 75, 547-549) cautioned the use of muscle lipids and fatty acids in this context, advocating for other biomarkers. This study provides additional evidence from peer-reviewed literature to contend the usefulness of elasmobranch muscle fatty acid profiles to detail diet and habitat use. It also presents findings from a controlled experiment on captive Port Jackson sharks Heterodontus portusjacksoni (Meyer 1793) whereby long-term (daily for 33 days) 3 min exhaustive chase exercise changed muscle lipid class profiles, supporting its use to infer nutritional condition after activities such as interactions with wildlife tourism operators. Conversely, the unaltered muscle fatty acid and lipid content suggests their use in trophic ecology is not confounded by activities such as interacting with tourism operators, remaining useful biomarkers to investigate diet and habitat use.
Asunto(s)
Dieta/veterinaria , Ácidos Grasos/análisis , Lípidos/análisis , Músculo Esquelético/química , Tiburones/fisiología , Animales , Constitución Corporal/fisiología , EcosistemaRESUMEN
In the original publication of the article, the Fig. 4 was erroneously published.
RESUMEN
The development of adaptive responses to novel situations via learning has been demonstrated in a wide variety of animal taxa. However, knowledge on the learning abilities of one of the oldest extant vertebrate groups, Chondrichthyes, remains limited. With the increasing interest in global wildlife tourism and shark feeding operations, it is important to understand the capacities of these animals to form associations between human activities and food. We used an operant conditioning regime with a simple spatial cognitive task to investigate the effects of reinforcement frequency and reward magnitude on the learning performance and memory retention of Port Jackson sharks (Heterodontus portusjacksoni). Twenty-four Port Jackson sharks were assigned one of four treatments differing in reward magnitude and reinforcement frequency (large magnitude-high frequency; large magnitude-low frequency; small magnitude-high frequency; small magnitude-low frequency). The sharks were trained over a 21-day period to compare the number of days that it took to learn to pass an assigned door to feed. Sharks trained at a high reinforcement frequency demonstrated faster learning rates and a higher number of passes through the correct door at the end of the trials, while reward magnitude had limited effects on learning rate. This suggests that a reduction in reinforcement frequency during tourism-related feeding operations is likely to be more effective in reducing the risk of sharks making associations with food than limiting the amount of food provided.
Asunto(s)
Tiburones , Animales , Cognición , Aprendizaje , Memoria , RecompensaRESUMEN
With just a handful of documented cases of hybridisation in cartilaginous fishes, shark hybridisation remains poorly investigated. Small amounts of admixture have been detected between Galapagos (Carcharhinus galapagensis) and dusky (Carcharhinus obscurus) sharks previously, generating a hypothesis of ongoing hybridisation. We sampled a large number of individuals from areas where the species co-occur (contact zones) across the Pacific Ocean and used both mitochondrial and nuclear-encoded SNPs to examine genetic admixture and introgression between the two species. Using empirical analytical approaches and simulations, we first developed a set of 1873 highly informative SNPs for these two species to evaluate the degree of admixture between them. Overall, results indicate a high discriminatory power of nuclear SNPs (FSTâ¯=â¯0.47, pâ¯<â¯0.05) between the two species, unlike mitochondrial DNA (ΦSTâ¯=â¯0.00 pâ¯>â¯0.05), which failed to differentiate these species. We identified four hybrid individuals (â¼1%) and detected bi-directional introgression between C. galapagensis and C. obscurus in the Gulf of California along the east Pacific coast of the Americas. We emphasize the importance of including a combination of mtDNA and diagnostic nuclear markers to properly assess species identification, detect patterns of hybridisation, and better inform management and conservation of these sharks, especially given the morphological similarities within the genus Carcharhinus.
Asunto(s)
Hibridación Genética , Tiburones/genética , Animales , Teorema de Bayes , California , Simulación por Computador , ADN Mitocondrial/genética , Geografía , Mitocondrias/genética , Océano Pacífico , Filogenia , Polimorfismo de Nucleótido Simple/genética , Tamaño de la MuestraRESUMEN
Some fishes and sea turtles are distinct from ectotherms by having elevated core body temperatures and metabolic rates. Quantifying the energetics and activity of the regionally endothermic species will help us understand how a fundamental biophysical process (i.e. temperature-dependent metabolism) shapes animal ecology; however, such information is limited owing to difficulties in studying these large, highly active animals. White sharks, Carcharodon carcharias, are the largest fish with regional endothermy, and potentially among the most energy-demanding fishes. Here, we deployed multi-sensor loggers on eight white sharks aggregating near colonies of long-nosed fur seals, Arctocephalus forsteri, off the Neptune Islands, Australia. Simultaneous measurements of depth, swim speed (a proxy for swimming metabolic rate) and body acceleration (indicating when sharks exhibited energy-efficient gliding behaviour) revealed their fine-scale swimming behaviour and allowed us to estimate their energy expenditure. Sharks repeatedly dived (mean swimming depth, 29â m) and swam at the surface between deep dives (maximum depth, 108â m). Modal swim speeds (0.80-1.35â mâ s-1) were slower than the estimated speeds that minimize cost of transport (1.3-1.9â mâ s-1), a pattern analogous to a 'sit-and-wait' strategy for a perpetually swimming species. All but one shark employed unpowered gliding during descents, rendering deep (>50â m) dives 29% less costly than surface swimming, which may incur additional wave drag. We suggest that these behavioural strategies may help sharks to maximize net energy gains by reducing swimming cost while increasing encounter rates with fast-swimming seals.
Asunto(s)
Metabolismo Energético , Tiburones/fisiología , Natación , Animales , Femenino , Masculino , Conducta PredatoriaRESUMEN
We compared night deployments of Baited Remote Underwater Video Stations (BRUVS) in South Australia, illuminated by either red or blue light and found similar species compositions and abundances with both colours. We observed c. 1800 individuals from 52 species across 107 night-time deployments, with only one site out of six showing differences in assemblages between the two colours. With five out of six sites showing similarities between light colours our results differ from previous results and more generally suggest that the most suitable colour can differ among studies.
Asunto(s)
Peces/fisiología , Grabación en Video , Animales , Color , Oscuridad , Pigmentación , Australia del SurRESUMEN
Ectotherms exhibit considerable plasticity in their life-history traits. This plasticity can reflect variability in environmental and social factors, but the causes of observed patterns are often obscured with increasing spatial scales. We surveyed dichromatic parrotfishes across the northern Great Barrier Reef to examine variation in body size distributions and concomitant size at sex change (L∆50 ) against hypotheses of directional influence from biotic and abiotic factors known to affect demography. By integrating top-down, horizontal, and bottom-up processes, we demonstrate a strong association between exposure regimes (which are known to influence nutritional ecology and mating systems) and both body size distribution and L∆50 (median length at female-to-male sex change), with an accompanying lack of strong empirical support for other biotic drivers previously hypothesized to affect body size distributions. Across sites, body size was predictably linked to variation in temperature and productivity, but the strongest predictor was whether subpopulations occurred at sheltered mid and inner shelf reefs or at wave-exposed outer shelf reef systems. Upon accounting for the underlying influence of body size distribution, this habitat-exposure gradient was highly associated with further L∆50 variation across species, demonstrating that differences in mating systems across exposure gradients affect the timing of sex change beyond variation concomitant with differing overall body sizes. We posit that exposure-driven differences in habitat disturbance regimes have marked effects on the nutritional ecology of parrotfishes, leading to size-related variation in mating systems, which underpin the observed patterns. Our results call for better integration of life-history, social factors, and ecosystem processes to foster an improved understanding of complex ecosystems such as coral reefs.
Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Demografía , Ecosistema , Femenino , Peces , MasculinoRESUMEN
Although animal-borne accelerometers are effective tools for quantifying the kinematics of animal behaviors, quantifying the burst movements of small and agile aquatic animals remains challenging. To capture the details of burst movements, accelerometers need to sample at a very high frequency, which will inevitably shorten the recording duration or increase the device size. To overcome this problem, we developed a high-frequency acceleration data-logger that can be triggered by a manually defined acceleration threshold, thus allowing the selective measurement of burst movements. We conducted experiments under laboratory and field conditions to examine the performance of the logger. The laboratory experiment using red seabream (Pagrus major) showed that the new logger could measure the kinematics of their escape behaviors. The field experiment using free-swimming yellowtail kingfish (Seriola lalandi) showed that the loggers trigger correctly. We suggest that this new logger can be applied to measure the burst movements of various small and agile animals.
Asunto(s)
Aceleración , Acelerometría/instrumentación , Actividad Motora , Perciformes/fisiología , Natación , Animales , Fenómenos BiomecánicosRESUMEN
There is no conclusive evidence of any nonhuman animal using the sun as part of its predation strategy. Here, we show that the world's largest predatory fish-the white shark (Carcharodon carcharias)-exploits the sun when approaching baits by positioning the sun directly behind them. On sunny days, sharks reversed their direction of approach along an east-west axis from morning to afternoon but had uniformly distributed approach directions during overcast conditions. These results show that white sharks have sufficient behavioral flexibility to exploit fluctuating environmental features when predating. This sun-tracking predation strategy has a number of potential functional roles, including improvement of prey detection, avoidance of retinal overstimulation, and predator concealment.
Asunto(s)
Conducta Predatoria , Tiburones/fisiología , Animales , Orientación , Sistema Solar , Conducta EspacialRESUMEN
The Magpie Fiddler ray, Trygonorrhina melaleuca Scott 1954, is presently South Australia's (SA) rarest fish, represented by only three museum specimens collected near Adelaide over the past 60 years and listed as Endangered in the IUCN Red List of Threatened Species. However, there is some doubt as to whether the Magpie Fiddler Ray is a different species from the widespread and common Southern Fiddler Ray, Trygonorrhina dumerilii (Castelnau 1873), resulting in two very contrasting scenarios for marine conservation. If the Magpie Fiddler Ray is a black and white patterned variant of the Southern Fiddler Ray then it will be removed from the Red List and appear as a synonym of T. dumerilii. Conversely, if it proves to be a different species then it remains SA's rarest fish species and highly data deficient. We analysed mtDNA and the largest ever nuclear gene dataset (>4,000 loci) applied to chondrichthyan species level systematics from the most recently collected Magpie Fiddler Ray specimens and a geographically representative selection of Southern Fiddler Rays to determine the species status of this enigmatic ray. We found that the Magpie Fiddler Rays share a mitochondrial haplotype with 23 Southern Fiddler Rays and are not differentiated from 35 Southern Fiddler Rays at more than 4000 SNPs derived from DArTseq data. The morphological trait values that are putatively diagnostic for the Magpie Fiddler Ray fall within the range of variation observed among Southern Fiddler Rays. Our analyses are consistent with the notion that the Magpie Fiddler Ray is a rare colour and pattern variant of the widespread and abundant Southern Fiddler Ray. We also identified two hybrids between the Eastern and Southern Fiddler Rays, only the third time that hybrids have been identified in nature in chondrichthyans. Our results provide critical guidance in the assessment of its conservation status and an ending to a 60 year old conundrum for marine conservation.
Asunto(s)
Escarabajos/clasificación , Rajidae/clasificación , Distribución Animal , Estructuras Animales/anatomía & histología , Estructuras Animales/crecimiento & desarrollo , Animales , Australia , Tamaño Corporal , Escarabajos/anatomía & histología , Escarabajos/crecimiento & desarrollo , Color , Ecosistema , Femenino , Masculino , Tamaño de los Órganos , Filogenia , Rajidae/anatomía & histología , Rajidae/genética , Rajidae/crecimiento & desarrolloRESUMEN
Data on the movement and space use of aquatic animals are crucial to understand complex interactions among biotic and abiotic components of ecosystems and facilitate effective conservation and management. Acoustic telemetry (AT) is a leading method for studying the movement ecology of aquatic animals worldwide, yet the ability to efficiently access study information from AT research is currently lacking, limiting advancements in its application. Here, we describe TrackdAT, an open-source metadata dataset where AT research parameters are catalogued to provide scientists, managers, and other stakeholders with the ability to efficiently identify and evaluate existing peer-reviewed research. Extracted metadata encompasses key information about biological and technical aspects of research, providing a comprehensive summary of existing AT research. TrackdAT currently hosts information from 2,412 journal articles published from 1969 to 2022 spanning 614 species and 380,289 tagged animals. TrackdAT has the potential to enable regional and global mobilization of knowledge, increased opportunities for collaboration, greater stakeholder engagement, and optimization of future ecological research.