Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 32(10): 1892-1905, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36100434

RESUMEN

Emerging spatial profiling technology has enabled high-plex molecular profiling in biological tissues, preserving the spatial and morphological context of gene expression. Here, we describe expanding the chemistry for the Digital Spatial Profiling platform to quantify whole transcriptomes in human and mouse tissues using a wide range of spatial profiling strategies and sample types. We designed multiplexed in situ hybridization probes targeting the protein-coding genes of the human and mouse transcriptomes, referred to as the human or mouse Whole Transcriptome Atlas (WTA). Human and mouse WTAs were validated in cell lines for concordance with orthogonal gene expression profiling methods in regions ranging from ∼10-500 cells. By benchmarking against bulk RNA-seq and fluorescence in situ hybridization, we show robust transcript detection down to ∼100 transcripts per region. To assess the performance of WTA across tissue and sample types, we applied WTA to biological questions in cancer, molecular pathology, and developmental biology. Spatial profiling with WTA detected expected gene expression differences between tumor and tumor microenvironment, identified disease-specific gene expression heterogeneity in histological structures of the human kidney, and comprehensively mapped transcriptional programs in anatomical substructures of nine organs in the developing mouse embryo. Digital Spatial Profiling technology with the WTA assays provides a flexible method for spatial whole transcriptome profiling applicable to diverse tissue types and biological contexts.


Asunto(s)
Perfilación de la Expresión Génica , Neoplasias , Humanos , Animales , Ratones , Hibridación Fluorescente in Situ/métodos , Perfilación de la Expresión Génica/métodos , Transcriptoma , Microambiente Tumoral
2.
Saudi Pharm J ; 32(4): 101980, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38439949

RESUMEN

Xanthine oxidase (XO) has been widely recognized as a pivotal enzyme in developing hyperuricemia, primarily contributing to the excessive production of uric acid during purine metabolism in the liver. One of the standard treatment approaches involves reducing uric acid levels by inhibiting XO activity. In this study, the leaf extract of Dolichandrone spathacea, traditionally used in folk medicine, was found to inhibit XO activity in the ethyl acetate and butanol fractions at a concentration of 100 µg/mL, their values were 78.57 ± 3.85 % (IC50 = 55.93 ± 5.73 µg/ml) and 69.43 ± 8.68 % (IC50 = 70.17 ± 7.98 µg/ml), respectively. The potential XO inhibitory components were isolated by bioactivity assays and the HR-ESI-MS and NMR spectra system. The main constituents of leaf extracts of Dolichandrone spathacea, six compounds, namely trans-4-methoxycinnamic acid (3), trans-3,4-dimethoxycinnamic acid (4), p-coumaric acid (5), martynoside (6), 6-O-(p-methoxy-E-cinnamoyl)-ajugol (7), and scolymoside (17), were identified as potent XO inhibitors with IC50 values ranging from 19.34 ± 1.63 µM to 64.50 ± 0.94 µM. The enzyme kinetics indicated that compounds 3-5, 7, and 17 displayed competitive inhibition like allopurinol, while compound 6 displayed a mixed-type inhibition. Computational studies corroborated these experimental results, highlighting the interactions between potential metabolites and XO enzyme. The hydrogen bonds played crucial roles in the binding interaction, especially, scolymoside (17) forms a hydrogen bond with Mos3004, exhibited the lowest binding energy (-18.3286 kcal/mol) corresponding to the lowest IC50 (19.34 ± 1.63 µM). Furthermore, nine compounds were isolated for the first time from this plant. In conclusion, Dolichandrone spathacea and its constituents possess the potential to modulate the xanthine oxidase enzyme involved in metabolism.

3.
Ann Clin Microbiol Antimicrob ; 18(1): 43, 2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31847847

RESUMEN

BACKGROUND: Staphylococcus has replaced streptococcus as the most common cause of infective endocarditis (IE) in developed health care systems. The trend in developing countries is less clear. AIM: To examine the epidemiological trends of infective endocarditis in a developing nation. METHODS: Single-centre, retrospective study of patients admitted with IE to a tertiary hospital in Malaysia over a 12-year period. RESULTS: The analysis included 182 patients (n = 153 Duke's definite IE, n = 29 possible IE). The mean age was 51 years. Rheumatic heart disease was present in 42%, while 7.6% were immunocompromised. IE affected native valves in 171 (94%) cases. Health-care associated IE (HCAIE) was recorded in 68 (37.4%). IE admission rates increased from 25/100,000 admissions (2012) to 59/100,000 admissions (2017). At least one major complication on admission was detected in 59 (32.4%) patients. Left-sided IE was more common than right-sided IE [n = 159 (87.4%) vs. n = 18 (9.9%)]. Pathogens identified by blood culture were staphylococcus group [n = 58 (40.8%)], streptococcus group [n = 51 (35.9%)] and Enterococcus species [n = 13 (9.2%)]. staphylococcus infection was highest in the HCAIE group. In-hospital death occurred in 65 (35.7%) patients. In-hospital surgery was performed for 36 (19.8%) patients. At least one complication was documented in 163 (85.7%). CONCLUSION: Staphylococcus is the new etiologic champion, reflecting the transition of the healthcare system. Streptococcus is still an important culprit organism. The incidence rate of IE appears to be increasing. The rate of patients with underlying rheumatic heart disease is still high.


Asunto(s)
Endocarditis Bacteriana , Staphylococcus aureus/aislamiento & purificación , Adulto , Anciano , Antibacterianos/uso terapéutico , Infección Hospitalaria , Países en Desarrollo , Endocarditis Bacteriana/tratamiento farmacológico , Endocarditis Bacteriana/microbiología , Endocarditis Bacteriana/mortalidad , Femenino , Humanos , Malasia/epidemiología , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Prevalencia , Estudios Retrospectivos , Infecciones Estafilocócicas/microbiología , Streptococcus/aislamiento & purificación , Adulto Joven
4.
Int J Mol Sci ; 19(6)2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921805

RESUMEN

Autophagy is involved in the development and differentiation of many cell types. It is essential for the pre-adipocytes to respond to the differentiation stimuli and may contribute to reorganizing the intracellulum to adapt the morphological and metabolic demands. Although AMPK, an energy sensor, has been associated with autophagy in several cellular processes, how it connects to autophagy during the adipocyte differentiation remains to be investigated. Here, we studied the interaction between AMPK and autophagy gene products at the mRNA level during adipocyte differentiation using public-access datasets. We used the weighted-gene co-expression analysis to detect and validate multiple interconnected modules of co-expressed genes in a dataset of MDI-induced 3T3-L1 pre-adipocytes. These modules were found to be highly correlated with the differentiation course of the adipocytes. Several novel interactions between AMPK and autophagy gene products were identified. Together, it is possible that AMPK-autophagy interaction is temporally and locally modulated in response to the differentiation stimuli.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis , Proteínas Relacionadas con la Autofagia/genética , Redes Reguladoras de Genes , Proteínas Quinasas/genética , Células 3T3 , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas Quinasas/metabolismo , Transcriptoma
5.
Mediators Inflamm ; 2014: 173403, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25294953

RESUMEN

INTRODUCTION: Macrophage reprogramming is vital for resolution of acute inflammation. Parenteral vitamin C (VitC) attenuates proinflammatory states in murine and human sepsis. However information about the mechanism by which VitC regulates resolution of inflammation is limited. METHODS: To examine whether physiological levels of VitC modulate resolution of inflammation, we used transgenic mice lacking L-gulono-γ-lactone oxidase. VitC sufficient/deficient mice were subjected to a thioglycollate-elicited peritonitis model of sterile inflammation. Some VitC deficient mice received daily parenteral VitC (200 mg/kg) for 3 or 5 days following thioglycollate infusion. Peritoneal macrophages harvested on day 3 or day 5 were examined for intracellular VitC levels, pro- and anti-inflammatory protein and lipid mediators, mitochondrial function, and response to lipopolysaccharide (LPS). The THP-1 cell line was used to determine the modulatory activities of VitC in activated human macrophages. RESULTS: VitC deficiency significantly delayed resolution of inflammation and generated an exaggerated proinflammatory response to in vitro LPS stimulation. VitC sufficiency and in vivo VitC supplementation restored macrophage phenotype and function in VitC deficient mice. VitC loading of THP-1 macrophages attenuated LPS-induced proinflammatory responses. CONCLUSION: VitC sufficiency favorably modulates macrophage function. In vivo or in vitro VitC supplementation restores macrophage phenotype and function leading to timely resolution of inflammation.


Asunto(s)
Ácido Ascórbico/metabolismo , Ácido Ascórbico/uso terapéutico , Inflamación/tratamiento farmacológico , Animales , Western Blotting , Línea Celular , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Peritonitis/inducido químicamente , Peritonitis/tratamiento farmacológico , Peritonitis/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Tioglicolatos/toxicidad
6.
Lab Chip ; 24(9): 2485-2496, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38587207

RESUMEN

The COVID-19 pandemic greatly impacted the in vitro diagnostic market, leading to the development of new technologies such as point-of-care testing (POCT), multiplex testing, and digital health platforms. In this study, we present a self-contained microfluidic chip integrated with an internet-of-things (IoT)-based point-of-care (POC) device for rapid and sensitive diagnosis of respiratory viruses. Our platform enables sample-to-answer diagnostics within 70 min by automating RNA extraction, reverse transcription-loop-mediated isothermal amplification (RT-LAMP), and fluorescence detection. The microfluidic chip is designed to store all the necessary reagents for the entire diagnostic assay, including a lysis buffer, a washing buffer, an elution buffer, and a lyophilized RT-LAMP cocktail. It can perform nucleic acid extraction, aliquoting, and gene amplification in multiple reaction chambers without cross-contamination. The IoT-based POC device consists of a Raspberry Pi 4 for device control and data processing, a CMOS sensor for measuring fluorescence signals, a resistive heater panel for temperature control, and solenoid valves for controlling the movement of on-chip reagent solutions. The proposed device is portable and features a touchscreen for user control and result display. We evaluated the performance of the platform using 11 clinical respiratory virus samples, including 5 SARS-CoV-2 samples, 2 influenza A samples, and 4 influenza B samples. All tested clinical samples were accurately identified with high specificity and fidelity, demonstrating the ability to simultaneously detect multiple respiratory viruses. The combination of the integrated microfluidic chip with the POC device offers a simple, cost-effective, and scalable solution for rapid molecular diagnosis of respiratory viruses in resource-limited settings.


Asunto(s)
COVID-19 , Internet de las Cosas , Dispositivos Laboratorio en un Chip , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/virología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Sistemas de Atención de Punto , Técnicas de Diagnóstico Molecular/instrumentación , Diseño de Equipo , Pruebas en el Punto de Atención , ARN Viral/análisis , ARN Viral/aislamiento & purificación , ARN Viral/genética , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/virología
7.
Drug Deliv ; 30(1): 2168793, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36694964

RESUMEN

Guava (Psidium guajava L.) is a well-known plant containing high levels of natural antioxidants, the phenolic compounds, which have been employed in numerous cosmetic products. However, these molecules are unstable to oxidants, light, temperature, pH, water, and enzymatic activities. Therefore, to enhance their stability and preserve their antioxidant activity, this study investigated the silk fibroin nanoparticles (SFNs) ability to encapsulate, deliver, and heat-protect the phenolic compounds of the guava leaves ethanolic extract. Firstly, the guava ethanolic extract was produced by maceration, which possessed a total phenolic content of 312.6 mg GAE/g DPW and a high antioxidant activity (IC50 = 5.397 ± 0.618 µg/mL). Then, the extract loaded SFNs were manufactured by desolvation method, and the particles demonstrated appropriate sizes of 200-700 nm with narrow size distribution, spherical shape, silk-II crystalline structure, high drug entrapment efficiency of > 70% (dependent on the fibroin content), and a two-phase sustained drug release for at least 210 min. Using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, the antioxidant activity of the guava extract was well-preserved in the extract loaded SFNs. Finally, after being treated with high temperature of 70 °C for 24 h, the guava extract almost loses all of its antioxidant property (5 times decrement), whereas the extract loaded SFNs could retain the extract activity. Conclusively, the SFNs proved much potential to deliver and heat-protect the guava extract phenolic compounds, and preserve their antioxidant activity. Confirmed by this case, SFNs could be further explored in protecting other natural compounds from environmental factors.


Asunto(s)
Fibroínas , Nanopartículas , Psidium , Antioxidantes/química , Psidium/química , Seda , Fenoles , Extractos Vegetales/química , Hojas de la Planta/química
8.
Clin Cosmet Investig Dermatol ; 16: 1109-1121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37131540

RESUMEN

Background: Wedelia trilobata L. (WT), a common herbal plant in Vietnam, is popularly used as a strong antioxidant in Vietnamese folk medicine. However, limited studies have reported the application of WT flower in cosmeceutical area. Purpose: This study explored the potentials of WT loaded fibroin microparticles (FMPs-WT) as a novel anti-aging cosmeceutical product. Methods: The WT flower was firstly extracted by maceration with methanol, ethanol 60%, and ethanol 96%, and its chemical compositions and total polyphenol content were investigated. Then, the FMPs-WT were developed by desolvation method and physicochemically characterized. Finally, the product antioxidant activities were in-vitro determined using DPPH assay. Results: The optimal WT extract was the ethanol 60% extract, which contains polyphenols, alkaloids, flavonoids, saponins, glycosides, and organic acids; with a total polyphenol content of 46.47 ± 2.32 mg GAE/g plant powder. The FMPs-WT were successfully formulated, with a distinct silk-II polymorph; varied sizes of 0.592 to 9.820 µm, depending on the fibroin concentrations and the WT extraction solvent; high entrapment efficiencies of >65%; and sustained-release patterns of polyphenol in pH 7.4 for >6 h. Regarding the antioxidant activity, the pure WT flower extracts possessed high scavenging actions with IC50 of 7.98 ± 0.40 µg/mL, comparable with the standard ascorbic acid (IC50 = 4.23 ± 0.21 µg/mL). Moreover, the FMPs-WT could retain the extract antioxidant capacity, and exert the effects in a timely manner, corresponding to its release profile. Conclusion: The FMPs-WT could be further investigated to become a potential anti-aging cosmeceutical product in the market.

9.
ACS Sens ; 8(2): 515-521, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36722714

RESUMEN

We proposed a portable sample pretreatment microsystem, which can be automatically operated through speech recognition in a smartphone app. The proposed sample pretreatment microsystem consists of a microfluidic chip, an air router, pressure and vacuum lines with air pump motors, six 3-way solenoid valves, and a microcontroller with a Bluetooth module. The command of a human voice conducted the whole process of DNA extraction from pathogenic bacterial samples. Thus, manual interference during the DNA extraction is eliminated, preventing any potential infection from human touch. The palm-sized sample pretreatment microsystem can be run by a portable battery or a conventional smartphone charger. Genomic DNA ofSalmonella typhimuriumwas purified on a chip in less than 1 min with an extraction efficiency of 70 ± 5%.


Asunto(s)
Aplicaciones Móviles , Percepción del Habla , Humanos , Microfluídica , Teléfono Inteligente , ADN/genética
10.
Anal Chim Acta ; 1192: 339344, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35057943

RESUMEN

Flow-focusing droplet generators have been extensively employed for the generation of monodisperse droplets. However, the droplet device is usually designed with an application-specific performance that includes prescribed droplet size and generation frequency. To achieve an ideal device, cost- and time-inefficient iterations for the chip design and fabrication are usually needed. In this study, we take an advantage of 3D printing technology to rapidly prototype the droplet device that enables the facile control of the droplet size as well as the droplet generation frequency. Our device was designed with a screw-and-nut combination and the gap height (hg) between the dispersed phase outlet and the orifice could be easily and finely controlled by rotating the head of the threaded screw. The hg values can be precisely adjusted from 0 to 2000 µm supported by 20 designated control teeth on the screw head, which enable us to produce droplets in different sizes or in the same size with different generation frequencies. The proposed 3D printed device was employed to synthesize a variety of Ca-alginate microspheres containing A549 cells. The facile assembly of the screw-and-nut components allows us to prepare the droplet generator in a simple yet effective manner, and the size controllability of the droplets resulted in the production of various sizes of A549 cell-encapsulated microspheres, which can be used for drug screening.


Asunto(s)
Alginatos , Hidrogeles , Sistemas de Liberación de Medicamentos , Microesferas , Impresión Tridimensional
11.
Biosens Bioelectron ; 195: 113655, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34571479

RESUMEN

Rapid and accurate testing tools for SARS-CoV-2 detection are urgently needed to prevent the spreading of the virus and to take timely governmental actions. Internet of things (IoT)-based diagnostic devices would be an ideal platform for point-of-care (POC) screening of COVID-19 and ubiquitous healthcare monitoring for patients. Herein, we present an advanced IoT-based POC device for real-time direct reverse-transcription-loop mediated isothermal amplification assay to detect SARS-CoV-2. The diagnostic system is miniaturized (10 cm [height] × 9 cm [width] × 5.5 cm [length]) and lightweight (320 g), which can be operated with a portable battery and a smartphone. Once a liquid sample was loaded into an integrated microfluidic chip, a series of sample lysis, nucleic amplification, and real-time monitoring of the fluorescent signals of amplicons were automatically performed. Four reaction chambers were patterned on the chip, targeting As1e, N, E genes and a negative control, so multiple genes of SARS-CoV-2 could be simultaneously analyzed. The fluorescence intensities in each chamber were measured by a CMOS camera upon excitation with a 488 nm LED light source. The recorded data were processed by a microprocessor inside the IoT-based POC device and transferred and displayed on the wirelessly connected smartphone in real-time. The positive results could be obtained using three primer sets of SARS-CoV-2 with a limit of detection of 2 × 101 genome copies/µL, and the clinical sample of SARS-CoV-2 was successfully analyzed with high sensitivity and accuracy. Our platform could provide an advanced molecular diagnostic tool to test SARS-CoV-2 anytime and anywhere.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Internet de las Cosas , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sistemas de Atención de Punto , ARN Viral , SARS-CoV-2 , Sensibilidad y Especificidad
12.
Biosens Bioelectron ; 195: 113632, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34571485

RESUMEN

A micro-capillary electrophoresis (µCE) system is one of the widely adopted techniques in the molecular diagnostics and DNA sequencing due to the benefits of high resolution, rapid analysis, and low reagent consumption, but due to the requirements of bulky high-power suppliers and an expensive laser-induced fluorescence detector module, the conventional set-up of µCE system is not adequate for point-of-care (POC) molecular diagnostics. In this study, we constructed a miniaturized and integrated µCE system which can be manipulated by a smartphone. The smartphone not only powers two boost converters and an excited laser, but also controls the relay for the power switch. Moreover, the complementary metal-oxide-semiconductor (CMOS) camera of the smartphone was used for detecting the fluorescence signal of amplicons amplified with reverse transcription-polymerase chain reaction (RT-PCR). We also developed a web-based application so that the raw data of the recorded fluorescence intensity versus the running time can display typical capillary electropherograms on the smartphone. The total size of the hand-held µCE system was 9.6 cm [Width] × 22 cm [Length] × 15.5 cm [Height], and the weight was ∼1 kg, which is suitable for POC DNA testing. In the integrated smartphone-associated µCE system, we could accurately analyze two genes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), namely N gene and S gene along with two bracket ladders in 6 min to identify SARS-CoV-2. Such an advanced µCE platform can be applied for a variety of on-site molecular diagnostics fields with user-friendliness.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Análisis de Datos , Electroforesis Capilar , Humanos , SARS-CoV-2 , Teléfono Inteligente
13.
Sci Rep ; 10(1): 15123, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934342

RESUMEN

The increasing risk of infectious pathogens, especially in the under-developed countries, is demanding the development of point-of-care (POC) nucleic acid testing in the low-resource setting conditions. Here, we describe a methodology for colorimetric quantitative analysis of nucleic acid using an easy-to-build smartphone-based platform, offering low-cost, portability, simplicity in operation, and user-friendliness. The whole system consists of a hand-held box equipped with a smartphone, a film heater, a white LED, a loop-mediated isothermal amplification (LAMP) chip, and a DC converter, and all the processes were powered by a portable battery of 5 V. Upon the amplification of the target gene by an Eriochrome Black T-mediated LAMP reaction, the color of the LAMP reaction was changed from violet to blue that was real-time recorded by a smartphone camera. To keep track of the progress of the color change, we developed a novel mobile app in which a hue value was accepted as an indicator for color transition and for determining the threshold time of the amplification reaction. A calibration curve could be generated by plotting the logarithm of the known concentration of the DNA templates versus the threshold time, and it can be used to predict the copy number of nucleic acids in the test samples. Thus, the proposed mobile platform can inform us of not only qualitative but also quantitative results of the pathogens. We believe that this advanced colorimetric approach and the mobile app can expand the potentials of the smartphone for the future POCT system in the bio-diagnostic fields.

14.
Neurosci Lett ; 701: 106-111, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30807795

RESUMEN

Oxidative damage in neurons including glutamate excitotoxicity has been linked to increasing numbers of neuropathological conditions. Under these conditions, cells trigger several different cellular responses such as autophagy, apoptosis, necrosis and senescence. However, the connection between these responses is not well understood. In this study, we found that the 60-kDa BECN1 was specifically degraded to a 40-kDa fragment in hippocampal HT22 cells treated with 5 mM glutamate. Increased BECN1 cleavage was specifically associated with a decrease in cell viability under oxidative stress. Interestingly, this BECN1 cleavage was specifically inhibited by a calpain inhibitor ALLN but was not affected by other protease inhibitors. Also, the BECN1 cleavage was not detected in calpain-4-deficient cell lines. Furthermore, calpain cleaved BECN1 at a specific site between the coiled-coil domain and Bcl2 homology 3 domain, which is associated with the anti-apoptotic protein Bcl-2. Moreover, some cellular senescence markers, including ß-galactosidase, p21, p27Kip1, p53 and p16INK4A, increased proportionally to those of BECN1 cleaved fragments. These results suggest that calpain-mediated BECN1 cleavage under oxidative conditions is specifically associated with cell death induced by cellular senescence.


Asunto(s)
Beclina-1/metabolismo , Calpaína/metabolismo , Hipocampo/metabolismo , Estrés Oxidativo/fisiología , Animales , Apoptosis/fisiología , Calpaína/antagonistas & inhibidores , Calpaína/deficiencia , Caspasas/metabolismo , Línea Celular , Supervivencia Celular/fisiología , Senescencia Celular/fisiología , Ácido Glutámico/toxicidad , Células HeLa , Hipocampo/patología , Humanos , Leupeptinas/farmacología , Ratones , Células 3T3 NIH , Neuronas/metabolismo , Neuronas/patología , Especies Reactivas de Oxígeno/metabolismo
15.
Biosens Bioelectron ; 141: 111466, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31254863

RESUMEN

Since the emergence of the lab-on-a-chip technology in 1979, a variety of microfluidic devices have been developed and utilized for chemical and biological applications. Among the microfluidic devices, the centrifugal microfluidic device or lab-on-a-disc (LOAD) has advanced remarkably due to simple operation by the rotation, total integration, and high-throughput capability. Moreover, the centrifugal microdevices do not need complex tubing and pumping systems, which render them ideal for point-of-care testing (POCT) system. Owing to these characteristics, the centrifugal microdevices have been extensively used for bio-diagnostics. In particular, molecular diagnostics, which are regarded as an essential method for definite determination of the targets related with diseases, have been widely applied on the LOAD. In this review paper, we focus on the molecular diagnostics on the LOAD. The steps for the molecular diagnostics such as cell lysis, genome purification, gene amplification, amplicon detection, and data analysis can be performed individually or totally on the LOAD. Future directions of the LOAD in the fields of bio-diagnostics is to realize POCT for U-healthcare monitoring. In this context, the latest LOAD strategies for molecular diagnostics are summarized in this review paper, which would provide an insight for future POCT platform.


Asunto(s)
Dispositivos Laboratorio en un Chip , Ácidos Nucleicos/análisis , Pruebas en el Punto de Atención , Reacción en Cadena de la Polimerasa/instrumentación , Animales , Centrifugación/instrumentación , Diseño de Equipo , Humanos , Ácidos Nucleicos/genética
16.
PeerJ ; 6: e4740, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977664

RESUMEN

BACKGROUND: Craniofacial dysmorphic features are morphological changes of the face and skull which are associated with syndromic conditions. Moyamoya angiopathy is a rare cerebral vasculopathy that can be divided into Moyamoya syndrome, which is associated or secondary to other diseases, and into idiopathic Moyamoya disease. Facial dysmorphism has been described in rare genetic syndromes with associated Moyamoya syndrome. However, a direct relationship between idiopathic Moyamoya disease with dysmorphic facial changes is not known yet. METHODS: Landmarks were manually placed on frontal photographs of the face of 45 patients with bilateral Moyamoya disease and 50 matched controls. After procrustes alignment of landmarks a multivariate, penalized logistic regression (elastic-net) was performed on geometric features derived from landmark data to classify patients against controls. Classifiers were visualized in importance plots that colorcode importance of geometric locations for the classification decision. RESULTS: The classification accuracy for discriminating the total patient group from controls was 82.3% (P-value = 6.3×10-11, binomial test, a-priori chance 50.2%) for an elastic-net classifier. Importance plots show that differences around the eyes and forehead were responsible for the discrimination. Subgroup analysis corrected for body mass index confirmed a similar result. DISCUSSION: Results suggest that there is a resemblance in faces of Caucasian patients with idiopathic Moyamoya disease and that there is a difference to matched controls. Replication of findings is necessary as it is difficult to control all residual confounding in study designs such as ours. If our results would be replicated in a larger cohort, this would be helpful for pathophysiological interpretation and early detection of the disease.

17.
Oncotarget ; 9(21): 15526-15541, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29643990

RESUMEN

Autophagy contributes to reorganizing intracellular components and forming fat droplets during the adipocyte differentiation. Here, we systematically describe the role of autophagy-related genes and gene sets during the differentiation of adipocytes. We used a public dataset from the European Nucleotide Archive from an RNA-seq experiment in which 3T3-L1 cells were induced by a differentiation induction medium, total RNA was extracted and sequenced at four different time points. Raw reads were aligned to the UCSC mouse reference genome (mm10) using HISAT2, and aligned reads were summarized at the gene or exon level using HTSeq. DESeq2 and DEXSeq were used to model the gene and exon counts and test for differential expression and relative exon usage, respectively. After applying the appropriate transformation, gene counts were used to perform the gene set and pathway enrichment analysis. Data were obtained, processed and annotated using R and Bioconductor. Several autophagy-related genes and autophagy gene sets, as defined in the Gene Ontology, were actively regulated during the course of the adipocyte differentiation. We further characterized these gene sets by clustering their members to a few distinct temporal profiles. Other potential functionally related genes were identified using a machine learning procedure. In summary, we characterized the autophagy gene sets and their members to biologically meaningful groups and elected a number of genes to be functionally related based on their expression patterns, suggesting that autophagy plays a critical role in removal of some intracellular components and supply of energy sources for lipid biogenesis during adipogenesis.

18.
Autophagy ; 12(11): 2183-2196, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27540684

RESUMEN

Autophagy plays a critical role in maintaining cell homeostasis in response to various stressors through protein conjugation and activation of lysosome-dependent degradation. MAP1LC3B/LC3B (microtubule- associated protein 1 light chain 3 ß) is conjugated with phosphatidylethanolamine (PE) in the membranes and regulates initiation of autophagy through interaction with many autophagy-related proteins possessing an LC3-interacting region (LIR) motif, which is composed of 2 hydrophobic amino acids (tryptophan and leucine) separated by 2 non-conserved amino acids (WXXL). In this study, we identified a new putative LIR motif in PEBP1/RKIP (phosphatidylethanolamine binding protein 1) that was originally isolated as a PE-binding protein and also a cellular inhibitor of MAPK/ERK signaling. PEBP1 was specifically bound to PE-unconjugated LC3 in cells, and mutation (WXXL mutated to AXXA) of this LIR motif disrupted its interaction with LC3 proteins. Interestingly, overexpression of PEBP1 significantly inhibited starvation-induced autophagy by activating the AKT and MTORC1 (mechanistic target of rapamycin [serine/threonine kinase] complex 1) signaling pathway and consequently suppressing the ULK1 (unc-51 like autophagy activating kinase 1) activity. In contrast, ablation of PEBP1 expression dramatically promoted the autophagic process under starvation conditions. Furthermore, PEBP1 lacking the LIR motif highly stimulated starvation-induced autophagy through the AKT-MTORC1-dependent pathway. PEBP1 phosphorylation at Ser153 caused dissociation of LC3 from the PEBP1-LC3 complex for autophagy induction. PEBP1-dependent suppression of autophagy was not associated with the MAPK pathway. These findings suggest that PEBP1 can act as a negative mediator in autophagy through stimulation of the AKT-MTORC1 pathway and direct interaction with LC3.


Asunto(s)
Autofagia , Privación de Alimentos/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Mutación/genética , Proteínas de Unión a Fosfatidiletanolamina/química , Unión Proteica , Transducción de Señal
19.
Adv Wound Care (New Rochelle) ; 4(2): 100-109, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25713752

RESUMEN

Objective: Platelet-rich plasma (PRP) is a popular choice for the treatment of chronic wounds. Current dogma attributes these healing properties to the peptide growth factors of PRP. However, PRP is also rich in bioactive lipids whose contribution to healing has not been characterized and warrants investigation due to the protease-rich environment of chronic wounds. Approach: The lipid fraction of PRP was tested with respect to proliferation and migration of primary adult human dermal fibroblasts (HDFa)±exposure to chronic wound fluid (CWF). This fraction was also characterized via LC-MS/MS for bioactive lipids. A synthetic formulation of the bioactive lipid composition was developed and tested for the ability to overcome proliferative growth arrest induced by CWF. Results: The data demonstrate the ability of the lipid fraction of PRP to significantly enhance the migration and proliferation of HDFa, and to overcome the proliferative growth arrest induced by CWF. Furthermore, the synthetic lipid formulation generated following characterization of the PRP lipidome demonstrated a similar ability to overcome proliferative arrest of HDFa in the presence of CWF. Innovation: For the first time, we demonstrate the relevance of the lipid fraction of PRP toward the biology of wound healing. These studies open the possibility of altering the lipid profile of PRP via diet or exogenous pathway manipulation to obtain a better healing outcome. Conclusion: The lipid fraction of PRP is under investigated and yet relevant component in wound healing. The current study demonstrates the relevance of this fraction in wound healing by PRP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA