Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38743537

RESUMEN

Nonlinear systems, such as robotic systems, play an increasingly important role in our modern daily life and have become more dominant in many industries; however, robotic control still faces various challenges due to diverse and unstructured work environments. This article proposes a double-loop recurrent neural network (DLRNN) with the support of a Type-2 fuzzy system and a self-organizing mechanism for improved performance in nonlinear dynamic robot control. The proposed network has a double-loop recurrent structure, which enables better dynamic mapping. In addition, the network combines a Type-2 fuzzy system with a double-loop recurrent structure to improve the ability to deal with uncertain environments. To achieve an efficient system response, a self-organizing mechanism is proposed to adaptively adjust the number of layers in a DLRNN. This work integrates the proposed network into a conventional sliding mode control (SMC) system to theoretically and empirically prove its stability. The proposed system is applied to a three-joint robot manipulator, leading to a comparative study that considers several existing control approaches. The experimental results confirm the superiority of the proposed system and its effectiveness and robustness in response to various external system disturbances.

2.
J Imaging Inform Med ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809338

RESUMEN

The diagnosis and treatment of vocal fold disorders heavily rely on the use of laryngoscopy. A comprehensive vocal fold diagnosis requires accurate identification of crucial anatomical structures and potential lesions during laryngoscopy observation. However, existing approaches have yet to explore the joint optimization of the decision-making process, including object detection and image classification tasks simultaneously. In this study, we provide a new dataset, VoFoCD, with 1724 laryngology images designed explicitly for object detection and image classification in laryngoscopy images. Images in the VoFoCD dataset are categorized into four classes and comprise six glottic object types. Moreover, we propose a novel Multitask Efficient trAnsformer network for Laryngoscopy (MEAL) to classify vocal fold images and detect glottic landmarks and lesions. To further facilitate interpretability for clinicians, MEAL provides attention maps to visualize important learned regions for explainable artificial intelligence results toward supporting clinical decision-making. We also analyze our model's effectiveness in simulated clinical scenarios where shaking of the laryngoscopy process occurs. The proposed model demonstrates outstanding performance on our VoFoCD dataset. The accuracy for image classification and mean average precision at an intersection over a union threshold of 0.5 (mAP50) for object detection are 0.951 and 0.874, respectively. Our MEAL method integrates global knowledge, encompassing general laryngoscopy image classification, into local features, which refer to distinct anatomical regions of the vocal fold, particularly abnormal regions, including benign and malignant lesions. Our contribution can effectively aid laryngologists in identifying benign or malignant lesions of vocal folds and classifying images in the laryngeal endoscopy process visually.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA