Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Langmuir ; 37(1): 322-329, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33347302

RESUMEN

We report plasmon-free polymeric nanowrinkled substrates for surface-enhanced Raman spectroscopy (SERS). Our simple, rapid, and cost-effective fabrication method involves depositing a poly(ethylene glycol)diacrylate (PEGDA) prepolymer solution droplet on a fully polymerized, flat PEGDA substrate, followed by drying the droplet at room conditions and plasma treatment, which polymerizes the deposited layer. The thin polymer layer buckles under axial stress during plasma treatment due to its different mechanical properties from the underlying soft substrate, creating hierarchical wrinkled patterns. We demonstrate the variation of the wrinkling wavelength with the drying polymer molecular weight and concentration (direct relations are observed). A transition between micron to nanosized wrinkles is observed at 5 v % concentration of the lower molecular-weight polymer solution (PEGDA Mn 250). The wrinkled substrates are observed to be reproducible, stable (at room conditions), and, especially, homogeneous at and below the transition regime, where nanowrinkles dominate, making them suitable candidates for SERS. As a proof-of-concept, the enhanced SERS performance of micro/nanowrinkled surfaces in detecting graphene and hexagonal boron nitride (h-BN) is illustrated. Compared to the SiO2/Si surfaces, the wrinkled PEGDA substrates significantly enhanced the signature Raman band intensities of graphene and h-BN by a factor of 8 and 50, respectively.

2.
Small ; 16(7): e1906565, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31985166

RESUMEN

Higher order emulsions are used in a variety of different applications in biomedicine, biological studies, cosmetics, and the food industry. Conventional droplet generation platforms for making higher order emulsions use organic solvents as the continuous phase, which is not biocompatible and as a result, further washing steps are required to remove the toxic continuous phase. Recently, droplet generation based on aqueous two-phase systems (ATPS) has emerged in the field of droplet microfluidics due to their intrinsic biocompatibility. Here, a platform to generate all-aqueous double and triple emulsions by introducing pressure-driven flows inside a microfluidic hybrid device is presented. This system uses a conventional microfluidic flow-focusing geometry coupled with a coaxial microneedle and a glass capillary embedded in flow-focusing junctions. The configuration of the hybrid device enables the focusing of two coaxial two-phase streams, which helps to avoid commonly observed channel-wetting problems. It is shown that this approach achieves the fabrication of higher-order emulsions in a poly(dimethylsiloxane)-based microfluidic device, and controls the structure of the all-aqueous emulsions. This hybrid microfluidic approach allows for facile higher-order biocompatible emulsion formation, and it is anticipated that this platform will find utility for generating biocompatible materials for various biotechnological applications.

3.
Chemphyschem ; 19(16): 2113-2118, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29228474

RESUMEN

Electrospraying is a technique used to generate microparticles in a high throughput manner. For biomedical applications, a biocompatible electrosprayed material is often desirable. Using polymers, such as alginate hydrogels, makes it possible to create biocompatible and biodegradable microparticles that can be used for cell encapsulation, to be employed as drug carriers, and for use in 3D cell culturing. Evidence in the literature suggests that the morphology of the biocompatible microparticles is relevant in controlling the dynamics of the microparticles in drug delivery and 3D cell culturing applications. Yet, most electrospray-based techniques only form spherical microparticles, and there is currently no widely adopted technique for producing nonspherical microparticles at a high throughput. Here, we demonstrate the generation of nonspherical biocompatible alginate microparticles by electrospraying, and control the shape of the microparticles by varying experimental parameters such as chemical concentration and the distance between the electrospray tip and the particle-solidification bath. Importantly, we show that these changes to the experimental setup enable the synthesis of different shaped particles, and the systematic change in parameters, such as chemical concentration, result in monotonic changes to the particle aspect ratio. We expect that these results will find utility in many biomedical applications that require biocompatible microparticles of specific shapes.

4.
Langmuir ; 34(23): 6856-6860, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29792803

RESUMEN

Environment-responsive hydrogel structures are of great interest in materials research and have a wide range of applications. By using a flow lithography technique, we report a one-step and high-throughput fabrication method for the synthesis of highly pH-responsive hydrogels with designed shape transformations. In this method, heterogeneous hydrogels with porous and nonporous layers are synthesized using a single UV exposure in a microfluidic channel. During the UV polymerization, the porous layers, which are formed by using polymerization-induced phase separation (PIPS), significantly increase the swelling capability and enhance the swelling rate of the hydrogels. Because the flow-lithography approach allows various patterns of porous/nonporous layers with great control and enables the simple integration of PIPS, resultant layered hydrogels show extraordinary deformations with desired pH response. More importantly, our fabrication approach can not only make 2D deformation of hydrogel structures such as bending but also can achieve 3D structural deformation such as helical and buckling structures, enabled by nonuniform UV polymerization we developed.

5.
Langmuir ; 33(1): 184-190, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27933811

RESUMEN

A microfluidic flow lithography approach was investigated to synthesize highly porous nonspherical particles and Janus particles in a one-step and high-throughput fashion. In this study, using common solvents as porogens, we were able to synthesize highly porous particles with different shapes using ultraviolet (UV) polymerization-induced phase separation in a microfluidic channel. We also studied the pore-forming process using operating parameters such as porogen type, porogen concentration, and UV intensity to tune the pore size and increase the pore size to submicron levels. By simply coflowing multiple streams in the microfluidic channel, we were able to create porous Janus particles; we showed that their anisotropic swelling/deswelling exhibit a unique optical shifting. The distinctive optical properties and the enlarged surface area of the highly porous particles can improve their performance in various applications such as optical sensors and drug loading.

6.
Soft Matter ; 13(40): 7255-7263, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28960218

RESUMEN

The generation of microparticles with non-spherical morphologies has generated extensive interest because of their enhanced physical properties that can increase their performance in a wide variety of clinical and industrial applications. A flow lithographic technique based on stop flow lithography (SFL) recently showed the ability to fabricate particles with 3D shapes via manipulation of the UV intensity profile in a simple 2D microfluidic channel. Here, we further explore this flow lithographic method, called non-uniform flow lithography (NUFL), to investigate the 3D-shape tuning ability for the generation of 3D magnetic microparticles and their potential applications. We characterize the morphological microparticle shape change through variation of polymerization objective, UV intensity, and solution opacity. We also couple the particles' intrinsic anisotropic magnetic properties with an external magnetic field to create chains of bullet- and bell-shaped particles and a valve-like micromachine. In addition, in contrast to other complex and multi-step methodologies, NUFL shows a simple route for the facile creation of 3D microstructure platforms such as microneedles with fully modifiable tip morphology. This method presents intriguing possibilities for growing research within 3D microstructure assembly, micromachine systems and minimally invasive medical interventions.

7.
Anal Chem ; 88(7): 3982-9, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26959358

RESUMEN

We present a simple microfluidic system that generates water-in-water, aqueous two phase system (ATPS) droplets, by passive flow focusing. ATPS droplet formation is achieved by applying weak hydrostatic pressures, with liquid-filled pipette tips as fluid columns at the inlets, to introduce low speed flows to the flow focusing junction. To control the size of the droplets, we systematically vary the interfacial tension and viscosity of the ATPS fluids and adjust the fluid column height at the fluid inlets. The size of the droplets scales with a power law of the ratio of viscous stresses in the two ATPS phases. Overall, we find a drop size coefficient of variation (CV; i.e., polydispersity) of about 10%. We also find that when drops form very close to the flow focusing junction, the drops have a CV of less than 1%. Our droplet generation method is easily scalable: we demonstrate a parallel system that generates droplets simultaneously and improves the droplet production rate by up to one order of magnitude. Finally, we show the potential application of our system for encapsulating cells in water-in-water emulsions by encapsulating microparticles and cells. To the best of our knowledge, our microfluidic technique is the first that forms low interfacial tension ATPS droplets without applying external perturbations. We anticipate that this simple approach will find utility in drug and cell delivery applications because of the all-biocompatible nature of the water-in-water ATPS environment.


Asunto(s)
Técnicas Analíticas Microfluídicas , Agua/química , Humanos , Leucocitos Mononucleares/citología , Técnicas Analíticas Microfluídicas/instrumentación , Tamaño de la Partícula
8.
Langmuir ; 30(28): 8637-44, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24967616

RESUMEN

Poly(dimethylsiloxane) (PDMS)-based microfluidics provide a novel approach to advanced material synthesis. While PDMS has been successfully used in a wide range of industrial applications, due to the weak mechanical property channels generally possess low aspect ratios (AR) and thus produce microparticles with similarly low ARs. By increasing the channel width to nearly 1 cm, AR to 267, and implementing flow lithography, we were able to establish the slit-channel lithography. Not only does this allow us to synthesize sheet materials bearing multiscale features and tunable chemical anisotropy but it also allows us to fabricate functional layered sheet structures in a one-step, high-throughput fashion. We showcased the technique's potential role in various applications, such as the synthesis of planar material with micro- and nanoscale features, surface morphologies, construction of tubular and 3D layered hydrogel tissue scaffolds, and one-step formation of radio frequency identification (RFID) tags. The method introduced offers a novel route to functional sheet material synthesis and sheet system fabrication.


Asunto(s)
Microfluídica/métodos , Polímeros/química , Dimetilpolisiloxanos/química
9.
ACS Appl Mater Interfaces ; 15(50): 59037-59043, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38063021

RESUMEN

Due to the great biocompatibility of the aqueous two phase system (ATPS), biological cells have been widely encapsulated in ATPS microdroplets (diameter < 50 µm). However, the immobilization of relatively large multicellular organisms such as Caenorhabditis elegans in ATPS droplets remains challenging as the spontaneous generation of droplets greater than 200 µm is difficult without external perturbations. In this study, we utilize a microneedle-assisted coflow microfludic channel to passively form ATPS microdroplets larger than 200 µm and successfully entrap C. elegans in the microdroplets. We monitor the worm viability and its temporal stroke frequency up to 6 h. We study the effects of dextran (DEX)-to-polyethylene glycol (PEG) flow ratios and worm concentration on the droplet diameter, worm encapsulation efficiency, and the number of droplets containing individual worms. Larger ATPS microdroplets (>200 µm) form in the ranges of capillary number (Ca) between 0.020 to 0.20 and Weber number (We) between 10-5 and 10-3. An ATPS with the encapsulation ability and biocompatibility can offer an alternative immobilization tool for multicellular organisms to existing platforms such as water/oil droplets.


Asunto(s)
Caenorhabditis elegans , Agua , Animales , Polietilenglicoles , Dispositivos Laboratorio en un Chip
10.
J Am Chem Soc ; 134(17): 7337-43, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22462394

RESUMEN

We present the synthesis of nonspherical magnetic microparticles with multiple functionalities, shapes, and chemistries. Particle synthesis was performed in two steps: polymeric microparticles functionalized homogenously with carboxyl groups were generated using stop-flow lithography, and then in situ coprecipitation was used to grow magnetic nanoparticles at these carboxyl sites. With successive growth of magnetic nanoparticles, we obtained polymeric particles with saturation magnetizations of up to 42 emu/g microparticle. The growth in the magnetic nanoparticle mean size and polydispersity was determined from the magnetization curves obtained following each growth cycle; nanoparticle sizes were limited by the physical constraint of the effective mesh within the hosting gel microparticle. Particles with spatially segregated domains of varying magnetic properties (e.g., Janus particles, particles with step changes in magnetite concentration, etc.) can be synthesized readily using this approach.


Asunto(s)
Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Nanotecnología/métodos , Polímeros/química , Precipitación Química , Geles/química , Técnicas Analíticas Microfluídicas
11.
Langmuir ; 26(6): 4281-7, 2010 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-19842632

RESUMEN

In this study, we report the microfluidic-based synthesis of a multifunctional Janus hydrogel particle with anisotropic superparamagnetic properties and chemical composition for the bottom-up assembly of hydrogel superstructures. In a uniform magnetic field, the resulting Janus magnetic particles fabricated in the present method exhibit chainlike or meshlike superstructure forms, the complexity of which can be simply modulated by particle density and composition. This controllable field-driven assembly of the particles can be potentially used as building blocks to construct targeted superstructures for tissue engineering. More importantly, we demonstrated that this method also shows the ability to generate multifunctional Janus particles with great design flexibilities: (a) direct encapsulation and precise spatial distribution of biological substance and (b) selective surface functionalization in a particle. Although these monodisperse particles find immediate use in tissue engineering, their ability to self-assemble with tunable anisotropic configurations makes them an intriguing material for several exciting areas of research such as photonic crystals, novel microelectronic architecture, and sensing.


Asunto(s)
Magnetismo , Fluorescencia , Microfluídica , Microscopía Electrónica de Rastreo , Fotoquímica , Polímeros/química
12.
Sci Rep ; 10(1): 15687, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973304

RESUMEN

The use of microwells is popular for a wide range of applications due to its' simplicity. However, the seeding of conventional microwells, which are closed at the bottom, is restricted to gravitational sedimentation for cell or particle deposition and therefore require lengthy settling times to maximize well occupancy. The addition of microfluidics to the capture process has accelerated cell or particle dispersion and improved capture ability but is mostly limited to gravitationally-driven settling for capture into the wells. An alternative approach to conventional closed-microwells, sieved microwells supersedes reliance on gravity by using hydrodynamic forces through the open pores at the bottom of the microwells to draw targets into the wells. We have developed a rapid fabrication method, based on flow lithography techniques, which allows us to easily customize the mesh pore sizes in a simple two-step process. Finally, by combining this microwell design with cross-flow trapping in a microfluidic two-layered channel, we achieve an 88 ± 6% well occupancy in under 10 s.

13.
J Am Chem Soc ; 131(12): 4499-504, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19215127

RESUMEN

Microgel particles capable of bulk degradation have been synthesized from a solution of diacrylated triblock copolymer composed of poly(ethylene glycol) and poly(lactic acid) in a microfluidic device using stop-flow lithography (SFL). It has been previously demonstrated that SFL can be used to fabricate particles with precise control over particle size and shape. Here, we have fabricated hydrogel particles of varying size and shape and examined their mass-loss and swelling behavior histologically and mechanically. We report that these features, as well as degradation behavior of the hydrogel particles may be tailored with SFL. By reducing the applied UV dose during fabrication, hydrogel particles can be made to exhibit a distinct deviation from the classical erosion profiles of bulk-degrading hydrogels. At higher UV doses, a saturation in cross-linking density occurs and bulk-degrading behavior is observed. Finally, we synthesized multifunctional composite particles, providing unique features not found in homogeneous hydrogels.


Asunto(s)
Hidrogeles/química , Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Hidrogeles/metabolismo , Ácido Láctico/química , Ensayo de Materiales , Técnicas Analíticas Microfluídicas , Microfluídica , Tamaño de la Partícula , Fenómenos Físicos , Poliésteres , Polietilenglicoles/química , Polímeros/química , Temperatura , Ingeniería de Tejidos
14.
J Colloid Interface Sci ; 553: 382-389, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31226629

RESUMEN

Microdroplets have been utilized for a wide range of applications in biomedicine and biological studies. Despite the importance of such droplets, their fabrication is associated with difficulties in practice that emerge from the incompatible nature of chemicals, such as surfactants and organic solvents, with biological environments. Therefore, microfluidic methods have recently emerged that create biocompatible water-in-water droplets based on aqueous two-phase systems (ATPS), most commonly composed of water and incompatible polymers, dextran (DEX) and polyethylene glycol (PEG). However, so far, DEX- and PEG-based water-in-water droplet generation schemes have been plagued with low throughput, and most systems can only generate DEX-in-PEG droplets; PEG-in-DEX droplets have been elusive due to chemical interactions between the polymers and channel walls. Here, we describe a simple approach to generate water-in-water microdroplets passively at a high throughput of up to 850 Hz, and obtain both DEX-in-PEG and PEG-in-DEX droplets. Specifically, our method involves a simple modification to the conventional microfluidic flow focusing geometry, by the insertion of a microneedle to the flow focusing junction, which causes three-dimensional (3D) flow focusing of the dispersed phase fluid. We observe that the 3D flow focusing of the dispersed phase enables excellent control of droplet diameters, ranging from 5 to 65 µm, and achieves a high throughput. Moreover, we report the passive microfluidic generation of PEG-in-DEX droplets for the first time, because in our system the 3D flow focusing of the disperse phase separates the disperse PEG phase from the channel walls, negating the commonly observed wall wetting issues of the PEG phase. We expect this microfluidic approach to be useful in increasing the versatility and throughput of water-in-water droplet microfluidics, and help enable future biotechnological applications, such as microparticle-based drug delivery, cell encapsulation for single cell analysis, and immunoisolation for cell transplantation.

15.
Acta Biomater ; 99: 211-219, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31473363

RESUMEN

We present chitosan hydrogel microfluidic devices with self-assembled complex microcapillary patterns, conveniently formed by a diffusion-reaction process. These patterns in chitosan hydrogels are formed by a single-step procedure involving diffusion of a gelation agent into the polymer solution inside a microfluidic channel. By changing the channel geometry, it is demonstrated how to control capillary length, trajectory and branching. Diffusion of nanoparticles (NPs) in the capillary network is used as a model to effectively mimic the transport of nano-objects in vascularized tissues. Gold NPs diffusion is measured locally in the hydrogel chips, and during their two-step transport through the capillaries to the gel matrix and eventually to embedded cell clusters in the gel. In addition, the quantitative analyses reported in this study provide novel opportunities for theoretical investigation of capillary formation and propagation during diffusive gelation of biopolymers. STATEMENT OF SIGNIFICANCE: Hydrogel micropatterning is a challenging task, which is of interest in several biomedical applications. Creating the patterns through self assembly is highly beneficial, because of the accessible and practical preparation procedure. In this study, we introduced complex self-assembled capillary patterns in chitosan hydrogels using a microfluidic approach. To demonstrate the potential application of these capillary patterns, a vascularized hydrogel with microwells occupied by cells was produced, and the diffusion of gold nanoparticles travelling in the capillaries and diffusing in the gel were evaluated. This model mimics a simplified biological tissue, where nanomedicine has to travel through the vasculature, extravasate into and diffuse through the extracellular matrix and eventually reach targeted cells.


Asunto(s)
Quitosano/química , Hidrogeles/química , Microcirculación/efectos de los fármacos , Nanopartículas/química , Animales , Biopolímeros/química , Capilares , Bovinos , Difusión , Dimetilpolisiloxanos/química , Sistemas de Liberación de Medicamentos , Fibroblastos/citología , Oro/química , Ensayo de Materiales , Nanopartículas del Metal/química , Microfluídica , Microscopía Confocal , Hidróxido de Sodio/química , Ingeniería de Tejidos/métodos , Andamios del Tejido
16.
Lab Chip ; 8(10): 1640-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18813385

RESUMEN

Spherical and non-spherical magnetic hydrogel particles were synthesized in a microfluidic device containing an embedded UV light reflector. Monodisperse magnetic emulsion droplets were generated in a T-junction and allowed to relax into spheres, disks, and plugs in confining microchannel geometries. Particle morphology was locked-in via UV-initiated photopolymerization. The role of the reflector in the microchannel is to provide a uniform distribution of UV energy to the magnetic emulsion droplets and to increase the UV flux, which significantly improves UV polymerization conditions for microfluidic-based particle synthesis. Magnetic nanoparticles were uniformly encapsulated in the hydrogel, giving the microparticles superparamagnetic behavior. Additionally, the non-spherical particles show anisotropic responses under an applied external magnetic field.

17.
Acta Biomater ; 78: 89-97, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30092377

RESUMEN

Cell-cell communication plays a critical role in a myriad of processes, such as homeostasis, angiogenesis, and carcinogenesis, in multi-cellular organisms. Monolayer cell models have notably improved our understanding of cellular interactions. However, the cultured cells on the planar surfaces adopt a two-dimensional morphology, which poorly imitates cellular organization in vivo, providing physiologically-irrelevant cell responses. Non-planar surfaces comprising various patterns have demonstrated great abilities in directing cellular growth and producing different cell morphologies. In recent years, a few topographical substrates have provided valuable information about cell-cell signalling, however, none of these studies have reported a three-dimensional (3D) cell morphology. Here, we introduce a structurally tunable topographical platform that can maintain cell coupling while inducing a true 3D cell morphology. Optical imaging and fluorescence recovery after photobleaching are used to illustrate these capabilities. Our analyses suggest that the intercellular signalling on the present platform, which we propose is mainly through gap junctions, is comparable to that in natural tissue. STATEMENT OF SIGNIFICANCE: A better understanding of direct cellular communication can help treating neurological diseases and cancers, which may be caused by dysfunctional intercellular signaling. To investigate cell-cell contact, cells are conventionally plated onto planar surfaces, where they flatten and adopt a two-dimensional cell morphology. These unrealistic models are physiologically-irrelevant since cells exhibit a three-dimensional (3D) shape in the body. Therefore, porous scaffolds and topographical surfaces, capable of inducing various cell morphologies, have been introduced, in which the latter is more desirable for sample imaging and screening. However, the few non-planar substrates used to study cell coupling have not produced a 3D cell shape. Here, we present a tunable culture platform that can control direct cell-cell communication while maintaining true 3D cell morphologies.


Asunto(s)
Comunicación Celular , Forma de la Célula , Andamios del Tejido/química , Animales , Bovinos , Núcleo Celular/metabolismo , Fibroblastos/citología , Fibroblastos/ultraestructura , Recuperación de Fluorescencia tras Fotoblanqueo , Microfluídica
18.
Lab Chip ; 16(14): 2601-8, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27314278

RESUMEN

We demonstrate the dynamic control of aqueous two phase system (ATPS) droplets in shrinking, growing, and dissolving conditions. The ATPS droplets are formed passively in a flow focusing microfluidic channel, where the dextran-rich (DEX) and polyethylene glycol-rich (PEG) solutions are introduced as disperse and continuous phases, respectively. To vary the ATPS equilibrium condition, we infuse into a secondary inlet the PEG phase from a different polymer concentration ATPS. We find that the resulting alteration of the continuous PEG phase can cause droplets to shrink or grow by approximately 45 and 30%, respectively. This volume change is due to water exchange between the disperse DEX and continuous PEG phases, as the system tends towards new equilibria. We also develop a simple model, based on the ATPS binodal curve and tie lines, that predicts the amount of droplet shrinkage or growth, based on the change in the continuous phase PEG concentration. We observe a good agreement between our experimental results and the model. Additionally, we find that when the continuous phase PEG concentration is reduced such that PEG and DEX phases no longer phase separate, the ATPS droplets are dissolved into the continuous phase. We apply this method to controllably release encapsulated microparticles and cells, and we find that their release occurs within 10 seconds. Our approach uses the dynamic equilibrium of ATPS to control droplet size along the microfluidic channel. By modulating the ATPS equilibrium, we are able to shrink, grow, and dissolve ATPS droplets in situ. We anticipate that this approach may find utility in many biomedical settings, for example, in drug and cell delivery and release applications.

19.
Sci Rep ; 6: 30463, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27461741

RESUMEN

Surface wrinkled particles are ubiquitous in nature and present in different sizes and shapes, such as plant pollens and peppercorn seeds. These natural wrinkles provide the particles with advanced functions to survive and thrive in nature. In this work, by combining flow lithography and plasma treatment, we have developed a simple method that can rapidly create wrinkled non-spherical particles, mimicking the surface textures in nature. Due to the oxygen inhibition in flow lithography, the non-spherical particles synthesized in a microfluidic channel are covered by a partially cured polymer (PCP) layer. When exposed to plasma treatment, this PCP layer rapidly buckles, forming surface-wrinkled particles. We designed and fabricated various particles with desired shapes and sizes. The surfaces of these shapes were tuned to created wrinkle morphologies by controlling UV exposure time and the washing process. We further demonstrated that wrinkles on the particles significantly promoted cell attachment without any chemical modification, potentially providing a new route for cell attachment for various biomedical applications.


Asunto(s)
Fibroblastos/citología , Polímeros/química , Animales , Bovinos , Adhesión Celular , Fibroblastos/ultraestructura , Microfluídica , Microscopía Confocal , Espectroscopía de Fotoelectrones , Propiedades de Superficie , Factores de Tiempo , Rayos Ultravioleta
20.
Lab Chip ; 15(11): 2437-44, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25906146

RESUMEN

We present a technique that generates droplets using ultralow interfacial tension aqueous two-phase systems (ATPS). Our method combines a classical microfluidic flow focusing geometry with precisely controlled pulsating inlet pressure, to form monodisperse ATPS droplets. The dextran (DEX) disperse phase enters through the central inlet with variable on-off pressure cycles controlled by a pneumatic solenoid valve. The continuous phase polyethylene glycol (PEG) solution enters the flow focusing junction through the cross channels at a fixed flow rate. The on-off cycles of the applied pressure, combined with the fixed flow rate cross flow, make it possible for the ATPS jet to break up into droplets. We observe different droplet formation regimes with changes in the applied pressure magnitude and timing, and the continuous phase flow rate. We also develop a scaling model to predict the size of the generated droplets, and the experimental results show a good quantitative agreement with our scaling model. Additionally, we demonstrate the potential for scaling-up of the droplet production rate, with a simultaneous two-droplet generating geometry. We anticipate that this simple and precise approach to making ATPS droplets will find utility in biological applications where the all-biocompatibility of ATPS is desirable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA