Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biomed Sci ; 31(1): 21, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350919

RESUMEN

BACKGROUND: Cancer susceptibility germline mutations are associated with pancreatic ductal adenocarcinoma (PDAC). However, the hereditary status of PDAC and its impact on survival is largely unknown in the Asian population. METHODS: Exome sequencing was performed on 527 blood samples from PDAC individuals and analyzed for mutations in 80 oncogenic genes. Pathogenic and likely pathogenic (P/LP) germline variants were diagnosed according to the ACMG variant classification categories. The association between germline homologous recombination gene mutations (gHRmut, including BAP1, BRCA1, BRCA2, PALB2, ATM, BLM, BRIP1, CHEK2, NBN, MUTYH, FANCA and FANCC) and the treatment outcomes was explored in patients with stage III/IV diseases treated with first-line (1L) platinum-based versus platinum-free chemotherapy. RESULTS: Overall, 104 of 527 (19.7%) patients carried germline P/LP variants. The most common mutated genes were BRCA2 (3.60%), followed by ATR (2.66%) and ATM (1.9%). After a median follow-up duration of 38.3-months (95% confidence interval, 95% CI 35.0-43.7), the median overall survival (OS) was not significantly different among patients with gHRmut, non-HR germline mutations, or no mutation (P = 0.43). Among the 320 patients with stage III/IV disease who received 1L combination chemotherapy, 32 (10%) had gHRmut. Of them, patients receiving 1L platinum-based chemotherapy exhibited a significantly longer median OS compared to those with platinum-free chemotherapy, 26.1 months (95% CI 12.7-33.7) versus 9.6 months (95% CI 5.9-17.6), P = 0.001. However, the median OS of patients without gHRmut was 14.5 months (95% CI 13.2-16.9) and 12.6 months (95% CI 10.8-14.7) for patients receiving 1L platinum-based and platinum-free chemotherapy, respectively (P = 0.22). These results were consistent after adjusting for potential confounding factors including age, tumor stage, performance status, and baseline CA 19.9 in the multivariate Cox regression analysis. CONCLUSIONS: Our study showed that nearly 20% of Taiwanese PDAC patients carried germline P/LP variants. The longer survival observed in gHRmut patients treated with 1L platinum-based chemotherapy highlights the importance of germline testing for all patients with advanced PDAC at diagnosis.


Asunto(s)
Mutación de Línea Germinal , Neoplasias Pancreáticas , Humanos , Taiwán , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Recombinación Homóloga , Genes BRCA2 , Proteína BRCA1/genética , Proteína BRCA2/genética
2.
Br J Dermatol ; 191(2): 252-260, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38477474

RESUMEN

BACKGROUND: Dominant dystrophic epidermolysis bullosa (DDEB) is characterized by trauma-induced blisters and, in some individuals, intense pruritus. Precisely what causes itch in DDEB and optimal ways to reduce it have not been fully determined. OBJECTIVES: To characterize DDEB skin transcriptomes to identify therapeutic targets to reduce pruritus in patients. METHODS: Using bulk RNA sequencing, we evaluated affected and unaffected skin biopsy samples from six patients with DDEB (all with the very itchy pruriginosa subtype) and four healthy individuals. Single-cell transcriptomes of affected (n = 2) and unaffected (n = 1) DDEB skin and healthy skin (n = 2) were obtained. Dupilumab treatment was provided for three patients. RESULTS: The skin bulk transcriptome showed significant enrichment of T helper (Th)1/2 and Th17 pathways in affected DDEB skin compared with nonlesional DDEB skin and healthy skin. Single-cell transcriptomics showed an association of glycolytically active GATA3+ Th2 cells in affected DDEB skin. Treatment with dupilumab in three people with DDEB led to significantly reduced visual analogue scale (VAS) itch scores after 12 weeks (mean VAS 3.83) compared with pretreatment (mean VAS 7.83). Bulk RNAseq and quantitative polymerase chain reaction showed that healthy skin and dupilumab-treated epidermolysis bullosa (EB) pruriginosa skin have similar transcriptomic profiles and reduced Th1/Th2 and Th17 pathway enrichment. CONCLUSIONS: Single-cell RNAseq helps define an enhanced DDEB-associated Th2 profile and rationalizes drug repurposing of anti-Th2 drugs in treating DDEB pruritus.


Dominant dystrophic epidermolysis bullosa (DDEB) is a rare inherited skin disease that causes fragile skin that blisters easily, often triggered by minor injuries. These blisters are accompanied by intense itching, which can be distressing. The underlying cause of DDEB lies in genetic mutations in a gene called COL7A1. This gene encodes 'type VII collagen', a protein crucial for attaching the outer skin layer (epidermis) to the layer beneath (dermis). Although the genetic basis of DDEB is understood, the causes of itch are not known. As well as this, effective treatments for DDEB are lacking, which has driven scientists to explore innovative approaches like repurposing existing drugs. Drug repurposing involves using medications that have already been approved for other health conditions. One such drug is dupilumab, which is used for severe atopic dermatitis (eczema). Dupilumab targets immune cells called Th2 cells, which play a role in inflammation and allergies. While dupilumab has shown promise in relieving DDEB itching, the way it works in this condition is unclear. This study, carried out by a group of researchers in Taiwan, looked at gene expression in DDEB-affected and unaffected skin, and compared it to gene expression in healthy skin samples. We found heightened activity in Th2 immune cells and abnormal gene signals related to itching, similar to atopic dermatitis. These findings support using dupilumab and other anti-inflammatory drugs to alleviate itching in DDEB. Clinical trials will be crucial to evaluate the effectiveness of these drugs for managing DDEB symptoms. This research opens doors for enhanced treatment options and improving the quality of life of people living with DDEB.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Epidermólisis Ampollosa Distrófica , Factor de Transcripción GATA3 , Prurito , Piel , Células Th2 , Humanos , Epidermólisis Ampollosa Distrófica/complicaciones , Epidermólisis Ampollosa Distrófica/inmunología , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/patología , Prurito/etiología , Prurito/inmunología , Prurito/tratamiento farmacológico , Prurito/patología , Células Th2/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Masculino , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/genética , Femenino , Piel/inmunología , Piel/patología , Adulto , Transcriptoma , Estudios de Casos y Controles , Persona de Mediana Edad , Análisis de la Célula Individual
3.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891193

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Asunto(s)
Proteínas de Unión al ADN/genética , Epigénesis Genética , Factores de Transcripción Forkhead/genética , Mutación , Proteínas Represoras/genética , Factores de Transcripción/genética , Sistema Urinario/metabolismo , Anomalías Urogenitales/genética , Proteínas Anfibias/antagonistas & inhibidores , Proteínas Anfibias/genética , Proteínas Anfibias/metabolismo , Animales , Estudios de Casos y Controles , Niño , Preescolar , Proteínas de Unión al ADN/metabolismo , Familia , Femenino , Factores de Transcripción Forkhead/metabolismo , Heterocigoto , Humanos , Lactante , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Ratones , Ratones Noqueados , Morfolinos/genética , Morfolinos/metabolismo , Linaje , Unión Proteica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Sistema Urinario/anomalías , Anomalías Urogenitales/metabolismo , Anomalías Urogenitales/patología , Secuenciación del Exoma , Xenopus
4.
J Transl Med ; 20(1): 324, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864526

RESUMEN

Kidney transplantation is a lifesaving option for patients with end-stage kidney disease. In Taiwan, urothelial carcinoma (UC) is the most common de novo cancer after kidney transplantation (KT). UC has a greater degree of molecular heterogeneity than do other solid tumors. Few studies have explored genomic alterations in UC after KT. We performed whole-exome sequencing to compare the genetic alterations in UC developed after kidney transplantation (UCKT) and in UC in patients on hemodialysis (UCHD). After mapping and variant calling, 18,733 and 11,093 variants were identified in patients with UCKT and UCHD, respectively. We excluded known single-nucleotide polymorphisms (SNPs) and retained genes that were annotated in the Catalogue of Somatic Mutations in Cancer (COSMIC), in the Integrative Onco Genomic cancer mutations browser (IntOGen), and in the Cancer Genome Atlas (TCGA) database of genes associated with bladder cancer. A total of 14 UCKT-specific genes with SNPs identified in more than two patients were included in further analyses. The single-base substitution (SBS) profile and signatures showed a relative high T > A pattern compared to COMSIC UC mutations. Ingenuity pathway analysis was used to explore the connections among these genes. GNAQ, IKZF1, and NTRK3 were identified as potentially involved in the signaling network of UCKT. The genetic analysis of posttransplant malignancies may elucidate a fundamental aspect of the molecular pathogenesis of UCKT.


Asunto(s)
Carcinoma de Células Transicionales , Trasplante de Riñón , Neoplasias de la Vejiga Urinaria , Humanos , Mutación/genética , Neoplasias de la Vejiga Urinaria/patología , Secuenciación del Exoma
5.
Eur J Clin Invest ; 52(5): e13715, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34783021

RESUMEN

BACKGROUND: Genetic and epigenetic factors are strongly associated with the autoimmune disease rheumatoid arthritis (RA). Cyclic AMP response element modulator (CREM), a gene related to immune system regulation, has been implicated in various immune-mediated inflammatory processes, although it remains unknown whether CREM is involved in RA. METHODS: This study enrolled 278 RA patients and 262 controls. Three variants [rs12765063, rs17499247, rs1213386] were identified through linkage disequilibrium and expression quantitative trait locus analysis, and CREM transcript abundance was determined by quantitative real-time polymerase chain reaction. The identified variants were genotyped using the TaqMan Allelic Discrimination assay, and CREM promoter methylation was assessed by bisulphite sequencing. Differences between groups and correlations between variables were assessed with Student's t-tests and Pearson's correlation coefficients. Associations between phenotypes and genotypes were evaluated with logistic regression. RESULTS: Rheumatoid arthritis patients exhibited increased CREM expression (p < .0001), which was decreased by methotrexate (p = .0223) and biologics (p = .0001), but could not be attributed to CREM variants. Interestingly, rs17499247 displayed a significant association with serositis (p = .0377), and rs1213386 increased the risk of lymphadenopathy (p = .0398). Furthermore, seven CpG sites showed decreased methylation in RA (p = .0477~ p < .0001). CONCLUSIONS: Collectively, our results indicate that CREM hypomethylation and CREM upregulation occur in RA and that CREM variants are involved in the development of serositis and lymphadenopathy in RA. This study highlights the novel roles of CREM in RA pathophysiology.


Asunto(s)
Artritis Reumatoide , Linfadenopatía , Serositis , Artritis Reumatoide/genética , Modulador del Elemento de Respuesta al AMP Cíclico/genética , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Epigénesis Genética , Humanos , Serositis/genética
6.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563222

RESUMEN

Oral squamous cell carcinoma (OSCC) carcinogenesis involves heterogeneous tumor cells, and the tumor microenvironment (TME) is highly complex with many different cell types. Cancer cell-TME interactions are crucial in OSCC progression. Candida albicans (C. albicans)-frequently pre-sent in the oral potentially malignant disorder (OPMD) lesions and OSCC tissues-promotes malignant transformation. The aim of the study is to verify the mechanisms underlying OSCC car-cinogenesis with C. albicans infection and identify the biomarker for the early detection of OSCC and as the treatment target. The single-cell RNA sequencing analysis (scRNA-seq) was performed to explore the cell subtypes in normal oral mucosa, OPMD, and OSCC tissues. The cell composi-tion changes and oncogenic mechanisms underlying OSCC carcinogenesis with C. albicans infec-tion were investigated. Gene Set Variation Analysis (GSVA) was used to survey the mechanisms underlying OSCC carcinogenesis with and without C. albicans infection. The results revealed spe-cific cell clusters contributing to OSCC carcinogenesis with and without C. albicans infection. The major mechanisms involved in OSCC carcinogenesis without C. albicans infection are the IL2/STAT5, TNFα/NFκB, and TGFß signaling pathways, whereas those involved in OSCC carcinogenesis with C. albicans infection are the KRAS signaling pathway and E2F target down-stream genes. Finally, stratifin (SFN) was validated to be a specific biomarker of OSCC with C. albicans infection. Thus, the detailed mechanism underlying OSCC carcinogenesis with C. albicans infection was determined and identified the treatment biomarker with potential precision medicine applications.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Biomarcadores , Candida albicans/genética , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma de Células Escamosas/patología , Humanos , Neoplasias de la Boca/patología , Análisis de Secuencia de ARN , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral/genética
7.
J Biomed Sci ; 28(1): 55, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301262

RESUMEN

BACKGROUND: Ocular adverse events are common dose-limiting toxicities in cancer patients treated with HSP90 inhibitors, such as AUY922; however, the pathology and molecular mechanisms that mediate AUY922-induced retinal toxicity remain undescribed. METHODS: The impact of AUY922 on mouse retinas and cell lines was comprehensively investigated using isobaric tags for relative and absolute quantitation (iTRAQ)­based proteomic profiling and pathway enrichment analysis, immunohistochemistry and immunofluorescence staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, MTT assay, colony formation assay, and western blot analysis. The effect of AUY922 on the Transient Receptor Potential cation channel subfamily M member 1 (TRPM1)-HSP90 chaperone complex was characterized by coimmunoprecipitation. TRPM1-regulated gene expression was analyzed by RNAseq analysis and gene set enrichment analysis (GSEA). The role of TRPM1 was assessed using both loss-of-function and gain-of-function approaches. RESULTS: Here, we show that the treatment with AUY922 induced retinal damage and cell apoptosis, dysregulated the photoreceptor and retinal pigment epithelium (RPE) layers, and reduced TRPM1 expression. Proteomic profiling and functional annotation of differentially expressed proteins reveals that those related to stress responses, protein folding processes, regulation of apoptosis, cell cycle and growth, reactive oxygen species (ROS) response, cell junction assembly and adhesion regulation, and proton transmembrane transport were significantly enriched in AUY922-treated cells. We found that AUY922 triggered caspase-3-dependent cell apoptosis, increased ROS production and inhibited cell growth. We determined that TRPM1 is a bona fide HSP90 client and characterized that AUY922 may reduce TRPM1 expression by disrupting the CDC37-HSP90 chaperone complex. Additionally, GSEA revealed that TRPM1-regulated genes were associated with retinal morphogenesis in camera-type eyes and the JAK-STAT cascade. Finally, gain-of-function and loss-of-function analyses validated the finding that TRPM1 mediated the cell apoptosis, ROS production and growth inhibition induced by AUY922. CONCLUSIONS: Our study demonstrates the pathology of AUY922-induced retinal toxicity in vivo. TRPM1 is an HSP90 client, regulates photoreceptor morphology and function, and mediates AUY922-induced cytotoxicity.


Asunto(s)
Antineoplásicos/toxicidad , Regulación hacia Abajo , Isoxazoles/toxicidad , Resorcinoles/toxicidad , Retina/efectos de los fármacos , Canales Catiónicos TRPM/genética , Animales , Femenino , Ratones , Ratones Desnudos , Canales Catiónicos TRPM/metabolismo
8.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142921

RESUMEN

Oral carcinogenesis involves the progression of the normal mucosa into potentially malignant disorders and finally into cancer. Tumors are heterogeneous, with different clusters of cells expressing different genes and exhibiting different behaviors. 4-nitroquinoline 1-oxide (4-NQO) and arecoline were used to induce oral cancer in mice, and the main factors for gene expression influencing carcinogenesis were identified through single-cell RNA sequencing analysis. Male C57BL/6J mice were divided into two groups: a control group (receiving normal drinking water) and treatment group (receiving drinking water containing 4-NQO (200 mg/L) and arecoline (500 mg/L)) to induce the malignant development of oral cancer. Mice were sacrificed at 8, 16, 20, and 29 weeks. Except for mice sacrificed at 8 weeks, all mice were treated for 16 weeks and then either sacrificed or given normal drinking water for the remaining weeks. Tongue lesions were excised, and all cells obtained from mice in the 29- and 16-week treatment groups were clustered into 17 groups by using the Louvain algorithm. Cells in subtypes 7 (stem cells) and 9 (keratinocytes) were analyzed through gene set enrichment analysis. Results indicated that their genes were associated with the MYC_targets_v1 pathway, and this finding was confirmed by the presence of cisplatin-resistant nasopharyngeal carcinoma cell lines. These cell subtype biomarkers can be applied for the detection of patients with precancerous lesions, the identification of high-risk populations, and as a treatment target.


Asunto(s)
Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/patología , 4-Nitroquinolina-1-Óxido/toxicidad , Animales , Arecolina/toxicidad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/inducido químicamente , Carcinogénesis/patología , Carcinógenos/toxicidad , Línea Celular Tumoral , Agonistas Colinérgicos/toxicidad , Modelos Animales de Enfermedad , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Boca/inducido químicamente , Estadificación de Neoplasias , Lesiones Precancerosas/inducido químicamente , Proteínas Proto-Oncogénicas c-myc/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/patología , Neoplasias de la Lengua/inducido químicamente
9.
Epilepsia ; 60(5): 807-817, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30980674

RESUMEN

OBJECTIVE: Variants in human PRRT2 cause paroxysmal kinesigenic dyskinesia (PKD) and other neurological disorders. Most reported variants resulting in truncating proteins failed to localize to cytoplasmic membrane. The present study identifies novel PRRT2 variants in PKD and epilepsy patients and evaluates the functional consequences of PRRT2 missense variations. METHODS: We investigated two families with PKD and epilepsies using Sanger sequencing and a multiple gene panel. Subcellular localization of mutant proteins was investigated using confocal microscopy and cell surface biotinylation assay in Prrt2-transfected cells. RESULTS: Two novel PRRT2 variants, p.His232Glnfs*10 and p.Leu298Pro, were identified, and functional study revealed impaired localization of both mutant proteins to the plasma membrane. Further investigation of other reported missense variants revealed decreased protein targeting to the plasma membrane in eight of the 13 missense variants examined (p.Trp281Arg, p.Ala287Thr, p.Ala291Val, p.Arg295Gln, p.Leu298Pro, p.Ala306Asp, p.Gly324Glu, and p.Gly324Arg). In contrast, all benign variants we tested exhibited predominant localization to the plasma membrane similar to wild-type Prrt2. Most likely pathogenic variants were located at conserved amino acid residues near the C-terminus, whereas truncating variants spread throughout the gene. SIGNIFICANCE: PRRT2 missense variants clustering at the C-terminus often lead to protein mislocalization. Failure in protein targeting to the plasma membrane by PRRT2 variants may be a key mechanism in causing PKD and related neurological disorders.


Asunto(s)
Distonía/genética , Proteínas de la Membrana/genética , Mutación Missense , Proteínas del Tejido Nervioso/genética , Adulto , Secuencia de Aminoácidos , Animales , Biotinilación , Membrana Celular/metabolismo , Secuencia Conservada , Distonía/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Proteínas del Tejido Nervioso/metabolismo , Polimorfismo Genético , Dominios Proteicos , Transporte de Proteínas , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/química , Taiwán , Transfección , Vertebrados/genética , Adulto Joven
10.
J Am Soc Nephrol ; 29(9): 2348-2361, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30143558

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of kidney disease in the first three decades of life. Previous gene panel studies showed monogenic causation in up to 12% of patients with CAKUT. METHODS: We applied whole-exome sequencing to analyze the genotypes of individuals from 232 families with CAKUT, evaluating for mutations in single genes known to cause human CAKUT and genes known to cause CAKUT in mice. In consanguineous or multiplex families, we additionally performed a search for novel monogenic causes of CAKUT. RESULTS: In 29 families (13%), we detected a causative mutation in a known gene for isolated or syndromic CAKUT that sufficiently explained the patient's CAKUT phenotype. In three families (1%), we detected a mutation in a gene reported to cause a phenocopy of CAKUT. In 15 of 155 families with isolated CAKUT, we detected deleterious mutations in syndromic CAKUT genes. Our additional search for novel monogenic causes of CAKUT in consanguineous and multiplex families revealed a potential single, novel monogenic CAKUT gene in 19 of 232 families (8%). CONCLUSIONS: We identified monogenic mutations in a known human CAKUT gene or CAKUT phenocopy gene as the cause of disease in 14% of the CAKUT families in this study. Whole-exome sequencing provides an etiologic diagnosis in a high fraction of patients with CAKUT and will provide a new basis for the mechanistic understanding of CAKUT.


Asunto(s)
Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/epidemiología , Linaje , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Animales , Humanos , Incidencia , Riñón/anomalías , Ratones , Fenotipo , Pronóstico , Medición de Riesgo , Sensibilidad y Especificidad , Distribución por Sexo , Sistema Urinario/anomalías , Anomalías Urogenitales/epidemiología , Reflujo Vesicoureteral/epidemiología
11.
Am J Hum Genet ; 97(2): 291-301, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26235987

RESUMEN

Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life. Identification of single-gene mutations that cause CAKUT permits the first insights into related disease mechanisms. However, for most cases the underlying defect remains elusive. We identified a kindred with an autosomal-dominant form of CAKUT with predominant ureteropelvic junction obstruction. By whole exome sequencing, we identified a heterozygous truncating mutation (c.1010delG) of T-Box transcription factor 18 (TBX18) in seven affected members of the large kindred. A screen of additional families with CAKUT identified three families harboring two heterozygous TBX18 mutations (c.1570C>T and c.487A>G). TBX18 is essential for developmental specification of the ureteric mesenchyme and ureteric smooth muscle cells. We found that all three TBX18 altered proteins still dimerized with the wild-type protein but had prolonged protein half life and exhibited reduced transcriptional repression activity compared to wild-type TBX18. The p.Lys163Glu substitution altered an amino acid residue critical for TBX18-DNA interaction, resulting in impaired TBX18-DNA binding. These data indicate that dominant-negative TBX18 mutations cause human CAKUT by interference with TBX18 transcriptional repression, thus implicating ureter smooth muscle cell development in the pathogenesis of human CAKUT.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Genes Dominantes/genética , Músculo Liso/embriología , Mutación/genética , Proteínas de Dominio T Box/genética , Uréter/embriología , Sistema Urinario/anomalías , Secuencia de Bases , Ensayo de Cambio de Movilidad Electroforética , Exoma/genética , Células HEK293 , Humanos , Inmunohistoquímica , Inmunoprecipitación , Microscopía Fluorescente , Datos de Secuencia Molecular , Linaje , Análisis de Secuencia de ADN
12.
J Am Soc Nephrol ; 28(1): 69-75, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27151922

RESUMEN

Congenital anomalies of the kidneys and urinary tract (CAKUT) are the leading cause of CKD in children, featuring a broad variety of malformations. A monogenic cause can be detected in around 12% of patients. However, the morphologic clinical phenotype of CAKUT frequently does not indicate specific genes to be examined. To determine the likelihood of detecting causative recessive mutations by whole-exome sequencing (WES), we analyzed individuals with CAKUT from 33 different consanguineous families. Using homozygosity mapping and WES, we identified the causative mutations in nine of the 33 families studied (27%). We detected recessive mutations in nine known disease-causing genes: ZBTB24, WFS1, HPSE2, ATRX, ASPH, AGXT, AQP2, CTNS, and PKHD1 Notably, when mutated, these genes cause multiorgan syndromes that may include CAKUT as a feature (syndromic CAKUT) or cause renal diseases that may manifest as phenocopies of CAKUT. None of the above monogenic disease-causing genes were suspected on clinical grounds before this study. Follow-up clinical characterization of those patients allowed us to revise and detect relevant new clinical features in a more appropriate pathogenetic context. Thus, applying WES to the diagnostic approach in CAKUT provides opportunities for an accurate and early etiology-based diagnosis and improved clinical management.


Asunto(s)
Exoma/genética , Mutación , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Humanos , Fenotipo , Síndrome
13.
Am J Hum Genet ; 93(4): 672-86, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24094744

RESUMEN

Primary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility. c21orf59 and c15orf26 knockdown in zebrafish and planaria blocked outer dynein arm assembly, and ccdc65 knockdown altered cilia beat pattern. Biochemical analysis in Chlamydomonas revealed that the C21orf59 ortholog FBB18 is a flagellar matrix protein that accumulates specifically when cilia motility is impaired. The Chlamydomonas ida6 mutant identifies CCDC65/FAP250 as an essential component of the nexin-dynein regulatory complex. Analysis of 295 individuals with PCD identified recessive truncating mutations of C21orf59 in four families and CCDC65 in two families. Similar to findings in zebrafish and planaria, mutations in C21orf59 caused loss of both outer and inner dynein arm components. Our results characterize two genes associated with PCD-causing mutations and elucidate two distinct mechanisms critical for motile cilia function: dynein arm assembly for C21orf59 and assembly of the nexin-dynein regulatory complex for CCDC65.


Asunto(s)
Trastornos de la Motilidad Ciliar/genética , Glicoproteínas/genética , Síndrome de Kartagener/genética , Pez Cebra/genética , Animales , Chlamydomonas/genética , Cilios/genética , Análisis Mutacional de ADN/métodos , Dineínas/genética , Femenino , Humanos , Masculino , Mutación , Sistemas de Lectura Abierta , Planarias/genética , Proteoma/genética
14.
Am J Hum Genet ; 93(2): 336-45, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23891469

RESUMEN

Defects of motile cilia cause primary ciliary dyskinesia (PCD), characterized by recurrent respiratory infections and male infertility. Using whole-exome resequencing and high-throughput mutation analysis, we identified recessive biallelic mutations in ZMYND10 in 14 families and mutations in the recently identified LRRC6 in 13 families. We show that ZMYND10 and LRRC6 interact and that certain ZMYND10 and LRRC6 mutations abrogate the interaction between the LRRC6 CS domain and the ZMYND10 C-terminal domain. Additionally, ZMYND10 and LRRC6 colocalize with the centriole markers SAS6 and PCM1. Mutations in ZMYND10 result in the absence of the axonemal protein components DNAH5 and DNALI1 from respiratory cilia. Animal models support the association between ZMYND10 and human PCD, given that zmynd10 knockdown in zebrafish caused ciliary paralysis leading to cystic kidneys and otolith defects and that knockdown in Xenopus interfered with ciliogenesis. Our findings suggest that a cytoplasmic protein complex containing ZMYND10 and LRRC6 is necessary for motile ciliary function.


Asunto(s)
Cilios/genética , Síndrome de Kartagener/genética , Proteínas/genética , Sistema Respiratorio/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Dineínas Axonemales/genética , Dineínas Axonemales/metabolismo , Biomarcadores/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cilios/metabolismo , Cilios/patología , Proteínas del Citoesqueleto , Exoma , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patología , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Linaje , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/metabolismo , Ratas , Sistema Respiratorio/patología , Proteínas Supresoras de Tumor/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
15.
Nephrol Dial Transplant ; 31(8): 1280-3, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26908769

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney diseases in children and young adults, accounting for ∼50% of cases. These anomalies represent maldevelopment of the genitourinary system and can be genetically explained in only 10-16% of cases by mutations or by copy number variations in protein coding sequences. Knock-out mouse models, lacking components of the microRNA (miRNA) processing machinery (i.e. Dicer, Drosha, Dgcr8), exhibit kidney malformations resembling human CAKUT. METHODS: Given the Dicer-null mouse phenotype, which implicates a central role for miRNAs gene regulation during kidney development, we hypothesized that miRNAs expressed during kidney development may cause CAKUT in humans if mutated. To evaluate this possibility we carried out Next-Generation sequencing of 96 stem-loop regions of 73 renal developmental miRNA genes in 1248 individuals with non-syndromic CAKUT from 980 families. RESULTS: We sequenced 96 stem-loop regions encoded by 73 miRNA genes that are expressed during kidney development in humans, mice and rats. Overall, we identified in 31/1213 individuals from 26 families with 17 different single nucleotide variants. Two variants did not segregate with the disease and hence were not causative. Thirteen variants were likely benign variants because they occurred in control populations and/or they affected nucleotides of weak evolutionary conservation. Two out of 1213 unrelated individuals had potentially pathogenic variants with unknown biologic relevance affecting miRNAs MIR19B1 and MIR99A. CONCLUSIONS: Our results indicate that mutations affecting mature microRNAs in individuals with CAKUT are rare and thus most likely not a common cause of CAKUT in humans.


Asunto(s)
Riñón/anomalías , MicroARNs/genética , Mutación , Sistema Urinario/anomalías , Anomalías Urogenitales/genética , Adolescente , Animales , Niño , Variaciones en el Número de Copia de ADN , Humanos , Ratones , Ratones Noqueados , Fenotipo , Ratas , Adulto Joven
16.
Hum Mutat ; 36(12): 1150-4, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26294094

RESUMEN

The VATER/VACTERL association describes the combination of congenital anomalies including vertebral defects, anorectal malformations, cardiac defects, tracheoesophageal fistula with or without esophageal atresia, renal malformations, and limb defects. As mutations in ciliary genes were observed in diseases related to VATER/VACTERL, we performed targeted resequencing of 25 ciliary candidate genes as well as disease-associated genes (FOXF1, HOXD13, PTEN, ZIC3) in 123 patients with VATER/VACTERL or VATER/VACTERL-like phenotype. We detected no biallelic mutation in any of the 25 ciliary candidate genes; however, identified an identical, probably disease-causing ZIC3 missense mutation (p.Gly17Cys) in four patients and a FOXF1 de novo mutation (p.Gly220Cys) in a further patient. In situ hybridization analyses in mouse embryos between E9.5 and E14.5 revealed Zic3 expression in limb and prevertebral structures, and Foxf1 expression in esophageal, tracheal, vertebral, anal, and genital tubercle tissues, hence VATER/VACTERL organ systems. These data provide strong evidence that mutations in ZIC3 or FOXF1 contribute to VATER/VACTERL.


Asunto(s)
Canal Anal/anomalías , Ano Imperforado/genética , Esófago/anomalías , Factores de Transcripción Forkhead/genética , Estudios de Asociación Genética , Cardiopatías Congénitas/genética , Proteínas de Homeodominio/genética , Riñón/anomalías , Deformidades Congénitas de las Extremidades/genética , Radio (Anatomía)/anomalías , Columna Vertebral/anomalías , Tráquea/anomalías , Factores de Transcripción/genética , Alelos , Animales , Ano Imperforado/diagnóstico , Cilios/genética , Biología Computacional/métodos , Análisis Mutacional de ADN , Femenino , Factores de Transcripción Forkhead/metabolismo , Genotipo , Cardiopatías Congénitas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/metabolismo , Humanos , Inmunohistoquímica , Deformidades Congénitas de las Extremidades/diagnóstico , Masculino , Ratones , Mutación , Fenotipo , Factores de Transcripción/metabolismo
17.
Hum Genet ; 134(8): 905-16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26026792

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) account for 40-50% of chronic kidney disease that manifests in the first two decades of life. Thus far, 31 monogenic causes of isolated CAKUT have been described, explaining ~12% of cases. To identify additional CAKUT-causing genes, we performed whole-exome sequencing followed by a genetic burden analysis in 26 genetically unsolved families with CAKUT. We identified two heterozygous mutations in SRGAP1 in 2 unrelated families. SRGAP1 is a small GTPase-activating protein in the SLIT2-ROBO2 signaling pathway, which is essential for development of the metanephric kidney. We then examined the pathway-derived candidate gene SLIT2 for mutations in cohort of 749 individuals with CAKUT and we identified 3 unrelated individuals with heterozygous mutations. The clinical phenotypes of individuals with mutations in SLIT2 or SRGAP1 were cystic dysplastic kidneys, unilateral renal agenesis, and duplicated collecting system. We show that SRGAP1 is expressed in early mouse nephrogenic mesenchyme and that it is coexpressed with ROBO2 in SIX2-positive nephron progenitor cells of the cap mesenchyme in developing rat kidney. We demonstrate that the newly identified mutations in SRGAP1 lead to an augmented inhibition of RAC1 in cultured human embryonic kidney cells and that the SLIT2 mutations compromise the ability of the SLIT2 ligand to inhibit cell migration. Thus, we report on two novel candidate genes for causing monogenic isolated CAKUT in humans.


Asunto(s)
Proteínas Activadoras de GTPasa , Péptidos y Proteínas de Señalización Intercelular , Mutación , Proteínas del Tejido Nervioso , Receptores Inmunológicos , Transducción de Señal/genética , Anomalías Urogenitales , Reflujo Vesicoureteral , Animales , Exoma , Proteínas Activadoras de GTPasa/biosíntesis , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mesodermo/metabolismo , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/metabolismo , Ratas , Receptores Inmunológicos/biosíntesis , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Factores de Riesgo , Anomalías Urogenitales/embriología , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/embriología , Reflujo Vesicoureteral/genética
18.
Clin Chem Lab Med ; 53(1): 73-83, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25153411

RESUMEN

BACKGROUND: Tubulointerstitial damage is a final common pathway of most renal diseases. Whether urinary neutrophil gelatinase-associated lipocalin (uNGAL), a biomarker for renal tubular damage, is of prognostic value for clinical outcomes in chronic kidney disease (CKD) patients has not been well investigated. METHODS: The uNGAL and proteinuria levels were measured among a cohort of 473 advanced CKD patients of various etiologies recruited during 2002-2009. RESULTS: The estimated glomerular filtration rate (eGFR) was 32.3±22.0 mL/min/1.73 m2 with a urine protein-to-creatinine ratio (UPCR) 680 (255-1248) mg/g and 132 (27.9%) participants had diabetes. The baseline uNGAL level was significantly associated with male gender, eGFR, UPCR, and hemoglobin. The hazard ratio (HR) of the highest uNGAL tertile for end-stage renal disease (ESRD) was 3.44 (95% CI 1.47-8.06, p=0.004). With the adjustment of urine creatinine and urine protein, HR of the highest urine NGAL-to-creatinine ratio (UNCR) tertile and the highest urine NGAL-to-protein ratio (UNPR) tertile was 3.06 (95% CI 1.19-7.90, p=0.02) and 2.10 (95% CI 1.13-3.89, p=0.02), respectively. UNPR increased the prediction of survival model for ESRD. HR of the highest UNCR tertile and UNPR tertile for cardiovascular (CV) events was 2.21 (95% CI 0.81-5.98, p=0.08) and 2.79 (95% CI 1.25-6.26, p=0.01), respectively. None of these were associated with all-cause mortality. CONCLUSIONS: Elevated uNGAL in CKD patients is associated with risks for ESRD and probably CV events. UNPR could improve the prediction for ESRD.


Asunto(s)
Proteínas de Fase Aguda/orina , Lipocalinas/orina , Proteínas Proto-Oncogénicas/orina , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/orina , Enfermedades Cardiovasculares/complicaciones , Estudios de Cohortes , Creatinina/orina , Femenino , Humanos , Fallo Renal Crónico/complicaciones , Lipocalina 2 , Masculino , Persona de Mediana Edad , Pronóstico , Proteinuria/complicaciones , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/enzimología , Medición de Riesgo
19.
J Am Soc Nephrol ; 25(9): 1917-22, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24700879

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) account for approximately 40% of children with ESRD in the United States. Hitherto, mutations in 23 genes have been described as causing autosomal dominant isolated CAKUT in humans. However, >90% of cases of isolated CAKUT still remain without a molecular diagnosis. Here, we hypothesized that genes mutated in recessive mouse models with the specific CAKUT phenotype of unilateral renal agenesis may also be mutated in humans with isolated CAKUT. We applied next-generation sequencing technology for targeted exon sequencing of 12 recessive murine candidate genes in 574 individuals with isolated CAKUT from 590 families. In 15 of 590 families, we identified recessive mutations in the genes FRAS1, FREM2, GRIP1, FREM1, ITGA8, and GREM1, all of which function in the interaction of the ureteric bud and the metanephric mesenchyme. We show that isolated CAKUT may be caused partially by mutations in recessive genes. Our results also indicate that biallelic missense mutations in the Fraser/MOTA/BNAR spectrum genes cause isolated CAKUT, whereas truncating mutations are found in the multiorgan form of Fraser syndrome. The newly identified recessive biallelic mutations in these six genes represent the molecular cause of isolated CAKUT in 2.5% of the 590 affected families in this study.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de la Matriz Extracelular/genética , Síndrome de Fraser/genética , Cadenas alfa de Integrinas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Riñón/anomalías , Mutación , Proteínas del Tejido Nervioso/genética , Receptores de Interleucina/genética , Sistema Urinario/anomalías , Reflujo Vesicoureteral/genética , Animales , Anomalías Congénitas/genética , Modelos Animales de Enfermedad , Femenino , Genes Recesivos , Humanos , Enfermedades Renales/congénito , Enfermedades Renales/genética , Masculino , Ratones , Ratones Mutantes , Anomalías Urogenitales
20.
Kidney Int ; 85(6): 1429-33, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24429398

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) account for approximately half of children with chronic kidney disease. CAKUT can be caused by monogenic mutations; however, data are lacking on their frequency. Genetic diagnosis has been hampered by genetic heterogeneity and lack of genotype-phenotype correlation. To determine the percentage of cases with CAKUT that can be explained by mutations in known CAKUT genes, we analyzed the coding exons of the 17 known dominant CAKUT-causing genes in a cohort of 749 individuals from 650 families with CAKUT. The most common phenotypes in this CAKUT cohort were vesicoureteral reflux in 288 patients, renal hypodysplasia in 120 patients, and unilateral renal agenesis in 90 patients. We identified 37 different heterozygous mutations (33 novel) in 12 of the 17 known genes in 47 patients from 41 of the 650 families (6.3%). These mutations include (number of families): BMP7 (1), CDC5L (1), CHD1L (5), EYA1 (3), GATA3 (2), HNF1B (6), PAX2 (5), RET (3), ROBO2 (4), SALL1 (9), SIX2 (1), and SIX5 (1). Furthermore, several mutations previously reported to be disease-causing are most likely benign variants. Thus, in a large cohort over 6% of families with isolated CAKUT are caused by a mutation in 12 of 17 dominant CAKUT genes. Our report represents one of the most in-depth diagnostic studies of monogenic causes of isolated CAKUT in children.


Asunto(s)
Genes Dominantes , Mutación , Reflujo Vesicoureteral/genética , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Herencia , Heterocigoto , Humanos , Masculino , Linaje , Fenotipo , Valor Predictivo de las Pruebas , Factores de Riesgo , Anomalías Urogenitales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA