Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Evol Biol ; 15: 118, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26138616

RESUMEN

BACKGROUND: Long-distance dispersal events have the potential to shape species distributions and ecosystem diversity over large spatial scales, and to influence processes such as population persistence and the pace and scale of invasion. How such dispersal strategies have evolved and are maintained within species is, however, often unclear. We have studied long-distance dispersal in a range of pest-controlling terrestrial spiders that are important predators within agricultural ecosystems. These species persist in heterogeneous environments through their ability to re-colonise vacant habitat by repeated long-distance aerial dispersal ("ballooning") using spun silk lines. Individuals are strictly terrestrial, are not thought to tolerate landing on water, and have no control over where they land once airborne. Their tendency to spread via aerial dispersal has thus been thought to be limited by the costs of encountering water, which is a frequent hazard in the landscape. RESULTS: In our study we find that ballooning in a subset of individuals from two groups of widely-distributed and phylogenetically distinct terrestrial spiders (linyphiids and one tetragnathid) is associated with a hitherto undescribed ability of those same individuals to survive encounters with both fresh and marine water. Individuals that showed a high tendency to adopt 'ballooning' behaviour adopted elaborate postures to seemingly take advantage of the wind current whilst on the water surface. CONCLUSIONS: The ability of individuals capable of long-distance aerial dispersal to survive encounters with water allows them to disperse repeatedly, thereby increasing the pace and spatial scale over which they can spread and subsequently exert an influence on the ecosystems into which they migrate. The potential for genetic connectivity between populations, which can influence the rate of localized adaptation, thus exists over much larger geographic scales than previously thought. Newly available habitat may be particularly influenced given the degree of ecosystem disturbance that is known to follow new predator introductions.


Asunto(s)
Migración Animal , Arañas/clasificación , Arañas/fisiología , Adaptación Fisiológica , Animales , Ecosistema , Filogenia , Arañas/genética , Agua
3.
Elife ; 92020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32396064

RESUMEN

Metabolic pathways and inflammatory processes are under circadian regulation. Rhythmic immune cell recruitment is known to impact infection outcomes, but whether the circadian clock modulates immunometabolism remains unclear. We find that the molecular clock Bmal1 is induced by inflammatory stimulants, including Ifn-γ/lipopolysaccharide (M1) and tumor-conditioned medium, to maintain mitochondrial metabolism under metabolically stressed conditions in mouse macrophages. Upon M1 stimulation, myeloid-specific Bmal1 knockout (M-BKO) renders macrophages unable to sustain mitochondrial function, enhancing succinate dehydrogenase (SDH)-mediated mitochondrial production of reactive oxygen species as well as Hif-1α-dependent metabolic reprogramming and inflammatory damage. In tumor-associated macrophages, aberrant Hif-1α activation and metabolic dysregulation by M-BKO contribute to an immunosuppressive tumor microenvironment. Consequently, M-BKO increases melanoma tumor burden, whereas administering the SDH inhibitor dimethyl malonate suppresses tumor growth. Therefore, Bmal1 functions as a metabolic checkpoint that integrates macrophage mitochondrial metabolism, redox homeostasis and effector functions. This Bmal1-Hif-1α regulatory loop may provide therapeutic opportunities for inflammatory diseases and immunotherapy.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Mitocondrias/metabolismo , Factores de Transcripción ARNTL/genética , Aminoácidos/metabolismo , Animales , Relojes Circadianos , Técnicas de Inactivación de Genes , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interferón gamma , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Malonatos/farmacología , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Estrés Oxidativo , Succinato Deshidrogenasa/metabolismo , Transcripción Genética , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
4.
Science ; 368(6490)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32355002

RESUMEN

Repeated bouts of exercise condition muscle mitochondria to meet increased energy demand-an adaptive response associated with improved metabolic fitness. We found that the type 2 cytokine interleukin-13 (IL-13) is induced in exercising muscle, where it orchestrates metabolic reprogramming that preserves glycogen in favor of fatty acid oxidation and mitochondrial respiration. Exercise training-mediated mitochondrial biogenesis, running endurance, and beneficial glycemic effects were lost in Il13-/- mice. By contrast, enhanced muscle IL-13 signaling was sufficient to increase running distance, glucose tolerance, and mitochondrial activity similar to the effects of exercise training. In muscle, IL-13 acts through both its receptor IL-13Rα1 and the transcription factor Stat3. The genetic ablation of either of these downstream effectors reduced running capacity in mice. Thus, coordinated immunological and physiological responses mediate exercise-elicited metabolic adaptations that maximize muscle fuel economy.


Asunto(s)
Adaptación Fisiológica/inmunología , Glucógeno/metabolismo , Interleucina-13/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Resistencia Física/inmunología , Animales , Glucemia/metabolismo , Línea Celular , Ácidos Grasos/metabolismo , Femenino , Humanos , Interleucina-13/sangre , Interleucina-13/genética , Subunidad alfa1 del Receptor de Interleucina-13/genética , Subunidad alfa1 del Receptor de Interleucina-13/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mioblastos/metabolismo , Oxidación-Reducción , Condicionamiento Físico Animal , Carrera , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
5.
Mol Metab ; 6(10): 1186-1197, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29031719

RESUMEN

OBJECTIVE: Alternative activation (M2) of adipose tissue resident macrophage (ATM) inhibits obesity-induced metabolic inflammation. The underlying mechanisms remain unclear. Recent studies have shown that dysregulated lipid homeostasis caused by increased lipolysis in white adipose tissue (WAT) in the obese state is a trigger of inflammatory responses. We investigated the role of M2 macrophages in lipotoxicity-induced inflammation. METHODS: We used microarray experiments to profile macrophage gene expression regulated by two M2 inducers, interleukin-4 (Il-4), and peroxisome proliferator-activated receptor delta/gamma (Pparδ/Pparγ) agonists. Functional validation studies were performed in bone marrow-derived macrophages and mice deprived of the signal transducer and activator of transcription 6 gene (Stat6; downstream effector of Il-4) or Pparδ/Pparγ genes (downstream effectors of Stat6). Palmitic acid (PA) and ß-adrenergic agonist were employed to induce macrophage lipid loading in vitro and in vivo, respectively. RESULTS: Profiling of genes regulated by Il-4 or Pparδ/Pparγ agonists reveals that alternative activation promotes the cell survival program, while inhibiting that of inflammation-related cell death. Deletion of Stat6 or Pparδ/Pparγ increases the susceptibility of macrophages to PA-induced cell death. NLR family pyrin domain containing 3 (Nlrp3) inflammasome activation by PA in the presence of lipopolysaccharide is also increased in Stat6-/- macrophages and to a lesser extent, in Pparδ/γ-/- macrophages. In concert, ß-adrenergic agonist-induced lipolysis results in higher levels of cell death and inflammatory markers in ATMs derived from myeloid-specific Pparδ/γ-/- or Stat6-/- mice. CONCLUSIONS: Our data suggest that ATM cell death is closely linked to metabolic inflammation. Within WAT where concentrations of free fatty acids fluctuate, M2 polarization regulated by the Stat6-Ppar axis enhances ATM's tolerance to lipid-mediated stress, thereby maintaining the homeostatic state.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Activación de Macrófagos/fisiología , Macrófagos/fisiología , Tejido Adiposo Blanco/patología , Animales , Apoptosis/fisiología , Muerte Celular/fisiología , Homeostasis , Inflamación/metabolismo , Inflamación/patología , Interleucina-4/metabolismo , Metabolismo de los Lípidos , Lipólisis/fisiología , Lipopolisacáridos/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/patología , PPAR delta/agonistas , PPAR delta/genética , PPAR gamma/agonistas , PPAR gamma/genética , Factor de Transcripción STAT6/metabolismo , Transducción de Señal , Transcriptoma
6.
Cell Metab ; 22(4): 709-20, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26365180

RESUMEN

Mitochondria undergo architectural/functional changes in response to metabolic inputs. How this process is regulated in physiological feeding/fasting states remains unclear. Here we show that mitochondrial dynamics (notably fission and mitophagy) and biogenesis are transcriptional targets of the circadian regulator Bmal1 in mouse liver and exhibit a metabolic rhythm in sync with diurnal bioenergetic demands. Bmal1 loss-of-function causes swollen mitochondria incapable of adapting to different nutrient conditions accompanied by diminished respiration and elevated oxidative stress. Consequently, liver-specific Bmal1 knockout (LBmal1KO) mice accumulate oxidative damage and develop hepatic insulin resistance. Restoration of hepatic Bmal1 activities in high-fat-fed mice improves metabolic outcomes, whereas expression of Fis1, a fission protein that promotes quality control, rescues morphological/metabolic defects of LBmal1KO mitochondria. Interestingly, Bmal1 homolog AHA-1 in C. elegans retains the ability to modulate oxidative metabolism and lifespan despite lacking circadian regulation. These results suggest clock genes are evolutionarily conserved energetics regulators.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Criptocromos/genética , Criptocromos/metabolismo , Dieta Alta en Grasa , Hepatocitos/citología , Hepatocitos/metabolismo , Insulina/metabolismo , Longevidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Interferencia de ARN , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 103(52): 19896-901, 2006 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-17179039

RESUMEN

Nisin is a small cationic lanthionine antibiotic produced by Lactococcus lactis. During its antimicrobial action, it targets intermediates in the bacterial cell-wall biosynthesis, lipid II, and undecaprenyl pyrophosphate. Here, we report results from electron microscopic investigations of the effects of lethal nisin doses on Bacillus subtilis cell morphology. Bacterial membranes were permeabilized shortly after B. subtilis was incubated with nisin, but this did not lead to immediate cell death. Cell division, as well as other life functions, persisted over at least half an hour after nisin was added. Slower bacterial elongation, consistent with cell envelope inhibition and accelerated division, resulted in cell-length reduction. Abnormal morphogenesis near the division site suggests this to be the primary site of nisin action. Morphological changes are characteristic of deregulation of a filamentous cell envelope protein, Mbl, and the division-inhibiting Min system. We propose a previously undescribed model, in which the lethal action of nisin against B. subtilis starts with membrane permeabilization and is followed by accelerated cell division, cell envelope inhibition, and aberrant cell morphogenesis.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Nisina/farmacología , Bacillus subtilis/ultraestructura , Microscopía Electrónica de Transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA