Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Genomics ; 15: 624, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25052193

RESUMEN

BACKGROUND: The Ts1Cje mouse model of Down syndrome (DS) has partial triplication of mouse chromosome 16 (MMU16), which is partially homologous to human chromosome 21. These mice develop various neuropathological features identified in DS individuals. We analysed the effect of partial triplication of the MMU16 segment on global gene expression in the cerebral cortex, cerebellum and hippocampus of Ts1Cje mice at 4 time-points: postnatal day (P)1, P15, P30 and P84. RESULTS: Gene expression profiling identified a total of 317 differentially expressed genes (DEGs), selected from various spatiotemporal comparisons, between Ts1Cje and disomic mice. A total of 201 DEGs were identified from the cerebellum, 129 from the hippocampus and 40 from the cerebral cortex. Of these, only 18 DEGs were identified as common to all three brain regions and 15 were located in the triplicated segment. We validated 8 selected DEGs from the cerebral cortex (Brwd1, Donson, Erdr1, Ifnar1, Itgb8, Itsn1, Mrps6 and Tmem50b), 18 DEGs from the cerebellum (Atp5o, Brwd1, Donson, Dopey2, Erdr1, Hmgn1, Ifnar1, Ifnar2, Ifngr2, Itgb8, Itsn1, Mrps6, Paxbp1, Son, Stat1, Tbata, Tmem50b and Wrb) and 11 DEGs from the hippocampus (Atp5o, Brwd1, Cbr1, Donson, Erdr1, Itgb8, Itsn1, Morc3, Son, Tmem50b and Wrb). Functional clustering analysis of the 317 DEGs identified interferon-related signal transduction as the most significantly dysregulated pathway in Ts1Cje postnatal brain development. RT-qPCR and western blotting analysis showed both Ifnar1 and Stat1 were over-expressed in P84 Ts1Cje cerebral cortex and cerebellum as compared to wild type littermates. CONCLUSIONS: These findings suggest over-expression of interferon receptor may lead to over-stimulation of Jak-Stat signaling pathway which may contribute to the neuropathology in Ts1Cje or DS brain. The role of interferon mediated activation or inhibition of signal transduction including Jak-Stat signaling pathway has been well characterized in various biological processes and disease models including DS but information pertaining to the role of this pathway in the development and function of the Ts1Cje or DS brain remains scarce and warrants further investigation.


Asunto(s)
Encéfalo/metabolismo , Síndrome de Down/genética , Interferones/metabolismo , Animales , Corteza Cerebral/metabolismo , Análisis por Conglomerados , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Hipocampo/metabolismo , Interferones/genética , Quinasas Janus/genética , Quinasas Janus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/genética , Trisomía
2.
Cereb Cortex ; 21(3): 683-97, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20693275

RESUMEN

Nrgn and Camk2n1 are highly expressed in the brain and play an important role in synaptic long-term potentiation via regulation of Ca(2+)/calmodulin-dependent protein kinase II. We have shown that the gene loci for these 2 proteins are actively transcribed in the adult cerebral cortex and feature multiple overlapping transcripts in both the sense and antisense orientations with alternative polyadenylation. These transcripts were upregulated in the adult compared with embryonic and P1.5 mouse cerebral cortices, and transcripts with different 3' untranslated region lengths showed differing expression profiles. In situ hybridization (ISH) analysis revealed spatiotemporal regulation of the Nrgn and Camk2n1 sense and natural antisense transcripts (NATs) throughout cerebral corticogenesis. In addition, we also demonstrated that the expression of these transcripts was organ-specific. Both Nrgn and Camk2n1 sense and NATs were also upregulated in differentiating P19 teratocarcinoma cells. RNA fluorescent ISH analysis confirmed the capability of these NATs to form double-stranded RNA aggregates with the sense transcripts in the cytoplasm of cells obtained from the brain. We propose that the differential regulation of multiple sense and novel overlapping NATs at the Nrgn and Camk2n1 loci will increase the diversity of posttranscriptional regulation, resulting in cell- and time-specific regulation of their gene products during cerebral corticogenesis and function.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Corteza Cerebral/crecimiento & desarrollo , Neurogénesis/genética , Neurogranina/genética , ARN sin Sentido/genética , Transcripción Genética , Animales , Southern Blotting , Diferenciación Celular/genética , Línea Celular Tumoral , Corteza Cerebral/fisiología , Análisis por Conglomerados , Perfilación de la Expresión Génica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
J Neurosci ; 26(27): 7234-44, 2006 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-16822981

RESUMEN

Understanding the transcriptional response to neuronal injury after trauma is a necessary prelude to formulation of therapeutic strategies. We used Serial Analysis of Gene Expression (SAGE) to identify 50,000 sequence tags representing 18,000 expressed genes in the cortex 2 h after traumatic brain injury (TBI). A similar tag library was obtained from sham-operated cortex. The SAGE data were validated on biological replicates using quantitative real-time-PCR on multiple samples at 2, 6, 12, and 24 h after TBI. This analysis revealed that the vast majority of genes showed a downward trend in their pattern of expression over 24 h. This was confirmed for a subset of genes using in situ hybridization and immunocytochemistry on brain sections. Of the overexpressed genes in the trauma library, Nedd4-WW (neural precursor cell expressed, developmentally downregulated) domain-binding protein 5 (N4WBP5) (also known as Ndfip1) is strongly expressed in surviving neurons around the site of injury. Overexpression of N4WBP5 in cultured cortical neurons increased the number of surviving neurons after gene transfection and growth factor starvation compared with control transfections. These results identify N4WBP5 as a neuroprotective protein and, based on its known interaction with the ubiquitin ligase Nedd4, would suggest protein ubiquitination as a possible survival strategy in neuronal injury.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Enfermedad Aguda , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Lesiones Encefálicas/patología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Corteza Cerebral/lesiones , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Perfilación de la Expresión Génica , Biblioteca de Genes , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/farmacología , Neuronas/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitina/metabolismo , Regulación hacia Arriba/genética
4.
Bioinformatics ; 20 Suppl 1: i31-9, 2004 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-15262778

RESUMEN

MOTIVATION: Sequencing errors may bias the gene expression measurements made by Serial Analysis of Gene Expression (SAGE). They may introduce non-existent tags at low abundance and decrease the real abundance of other tags. These effects are increased in the longer tags generated in LongSAGE libraries. Current sequencing technology generates quite accurate estimates of sequencing error rates. Here we make use of the sequence neighborhood of SAGE tags and error estimates from the base-calling software to correct for such errors. RESULTS: We introduce a statistical model for the propagation of sequencing errors in SAGE and suggest an Expectation-Maximization (EM) algorithm to correct for them given observed sequences in a library and base-calling error estimates. We tested our method using simulated and experimental SAGE libraries. When comparing SAGE libraries, we found that sequencing errors can introduce considerable bias. High abundance tags may be falsely called as significantly differentially expressed, especially when comparing libraries with different levels of sequencing errors and/or of different size. Truly, differentially expressed tags have decreased significance as 'true'-tag counts are generally underestimated. This may alter if tags near the threshold of differential expression are called significant. Moreover, the number of different transcripts present in a library is overestimated as false tags are introduced at low abundance. Our correction method adjusts the tag counts to be closer to the true counts and is able to partly correct for biases introduced by sequencing errors. AVAILABILITY: An implementation using R is distributed as an R package. An online version is available at http://tagcalling.mbgproject.org


Asunto(s)
Algoritmos , Interpretación Estadística de Datos , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Modelos Genéticos , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Simulación por Computador , Modelos Estadísticos , Datos de Secuencia Molecular , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
J Mol Neurosci ; 41(1): 172-82, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19953340

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition in which motor neurons of the spinal cord and motor cortex degenerate, resulting in progressive paralysis. Transgenic mice expressing human mutant Cu/Zn superoxide dismutase-1 (SOD1) present a pathology that is very similar to that seen in human ALS patients. Using serial analysis of gene expression, we investigated the effects of mutant human SOD1 protein on global gene expression in the spinal cord and lower brain stem of presymptomatic TgSOD1(G93A) transgenic mice. One hundred twenty transcripts were found to be significantly dysregulated in the presence of mutant SOD1 protein, 79 being down-regulated and 41 up-regulated. Quantitative RT-PCR was used to confirm the differential expression of nine of these genes. Immunohistochemistry analysis on spinal cord sections revealed that dysregulation of these mutant SOD1-induced molecular pathways are concomitant to the appearance of discrete signs of neuropathology including neuronal loss, elevated gliosis, and ubiquitin-positive deposits. Altogether, our data showed that early signs of neuropathology in the SOD1 mutant mice are accompanied by altered expression of genes involved in various biological processes including apoptosis, oxidative stress, ATP biosynthesis, myelination, and axonal transport.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Expresión Génica , Ratones Transgénicos/genética , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Axones/metabolismo , Tronco Encefálico/citología , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Perfilación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Saposinas/genética , Saposinas/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
6.
Genome Biol ; 10(10): R104, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19799774

RESUMEN

BACKGROUND: Development of the cerebral cortex requires highly specific spatio-temporal regulation of gene expression. It is proposed that transcriptome profiling of the cerebral cortex at various developmental time points or regions will reveal candidate genes and associated molecular pathways involved in cerebral corticogenesis. RESULTS: Serial analysis of gene expression (SAGE) libraries were constructed from C57BL/6 mouse cerebral cortices of age embryonic day (E) 15.5, E17.5, postnatal day (P) 1.5 and 4 to 6 months. Hierarchical clustering analysis of 561 differentially expressed transcripts showed regionalized, stage-specific and co-regulated expression profiles. SAGE expression profiles of 70 differentially expressed transcripts were validated using quantitative RT-PCR assays. Ingenuity pathway analyses of validated differentially expressed transcripts demonstrated that these transcripts possess distinctive functional properties related to various stages of cerebral corticogenesis and human neurological disorders. Genomic clustering analysis of the differentially expressed transcripts identified two highly transcribed genomic loci, Sox4 and Sox11, during embryonic cerebral corticogenesis. These loci feature unusual overlapping sense and antisense transcripts with alternative polyadenylation sites and differential expression. The Sox4 and Sox11 antisense transcripts were highly expressed in the brain compared to other mouse organs and are differentially expressed in both the proliferating and differentiating neural stem/progenitor cells and P19 (embryonal carcinoma) cells. CONCLUSIONS: We report validated gene expression profiles that have implications for understanding the associations between differentially expressed transcripts, novel targets and related disorders pertaining to cerebral corticogenesis. The study reports, for the first time, spatio-temporally regulated Sox4 and Sox11 antisense transcripts in the brain, neural stem/progenitor cells and P19 cells, suggesting they have an important role in cerebral corticogenesis and neuronal/glial cell differentiation.


Asunto(s)
Corteza Cerebral/embriología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/genética , ARN sin Sentido/genética , Factores de Transcripción SOXC/genética , Envejecimiento/genética , Animales , Línea Celular , Corteza Cerebral/metabolismo , Análisis por Conglomerados , Embrión de Mamíferos/metabolismo , Sitios Genéticos , Genoma/genética , Hibridación in Situ , Ratones , Familia de Multigenes/genética , Neuronas/metabolismo , Organogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXC/metabolismo , Programas Informáticos , Factores de Tiempo
7.
Proc Natl Acad Sci U S A ; 101(41): 14972-7, 2004 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-15466702

RESUMEN

The hypothalamus and neocortex are subdivisions of the mammalian forebrain, and yet, they have vastly different evolutionary histories, cytoarchitecture, and biological functions. In an attempt to define these attributes in terms of their genetic activity, we have compared their genetic repertoires by using the Serial Analysis of Gene Expression database. From a comparison of 78,784 hypothalamus tags with 125,296 neocortical tags, we demonstrate that each structure possesses a different transcriptional profile in terms of gene ontological characteristics and expression levels. Despite its more recent evolutionary history, the neocortex has a more complex pattern of gene activity. Gene identities and levels of gene expression were mapped to their chromosomal positions by using in silico definition of GC-rich and GC-poor genome bands. This analysis shows contrasting views of gene activity on a genome scale that is unique to each brain substructure. We show that genes that are more highly expressed in one tissue tend to be clustered together on a chromosomal scale, further defining the genetic identity of either the hypothalamus or neocortex. We propose that physical proximity of coregulated genes may facilitate transcriptional access to the genetic substrates of evolutionary selection that ultimately shape the functional subdivisions of the mammalian brain.


Asunto(s)
Cromosomas/genética , Regulación de la Expresión Génica/genética , Hipotálamo/fisiología , Neocórtex/fisiología , Transcripción Genética/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Cromosomas/fisiología , Bases de Datos de Ácidos Nucleicos , Ratones , Oligodesoxirribonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA