RESUMEN
Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate-limiting enzyme in the production of ketone bodies, including beta-hydroxybutyrate (ßOHB), distinguishes self-renewing Lgr5+ stem cells (ISCs) from differentiated cell types. Hmgcs2 loss depletes ßOHB levels in Lgr5+ ISCs and skews their differentiation toward secretory cell fates, which can be rescued by exogenous ßOHB and class I histone deacetylase (HDAC) inhibitor treatment. Mechanistically, ßOHB acts by inhibiting HDACs to reinforce Notch signaling, instructing ISC self-renewal and lineage decisions. Notably, although a high-fat ketogenic diet elevates ISC function and post-injury regeneration through ßOHB-mediated Notch signaling, a glucose-supplemented diet has the opposite effects. These findings reveal how control of ßOHB-activated signaling in ISCs by diet helps to fine-tune stem cell adaptation in homeostasis and injury.
Asunto(s)
Dieta Alta en Grasa , Cuerpos Cetónicos/metabolismo , Células Madre/metabolismo , Ácido 3-Hidroxibutírico/sangre , Ácido 3-Hidroxibutírico/farmacología , Anciano de 80 o más Años , Animales , Diferenciación Celular/efectos de los fármacos , Autorrenovación de las Células , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Hidroximetilglutaril-CoA Sintasa/deficiencia , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo , Intestinos/citología , Intestinos/patología , Masculino , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Adulto JovenRESUMEN
Extracellular matrix (ECM) proteins constitute >1% of the proteome and interact with many modifiers and growth factors to affect most aspects of cellular behaviour during development and normal physiology, as well as in diseases such as fibroses, cancer and many genetic disorders. In addition to biochemical signals provided to cells by ECM proteins, important cellECM interactions involve bidirectional mechanotransduction influences, which are dependent on the physical structure and organization of the ECM. These are beginning to be understood using twenty-first-century approaches, including biophysics, nanotechnology, biological engineering and modern microscopy. Articles in this issue of Nature Reviews Molecular Cell Biology review progress in our understanding of the ECM.
Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Animales , Biología Celular , Proteínas de la Matriz Extracelular/química , Mecanotransducción Celular , PatologíaRESUMEN
Checkpoint blockade immunotherapies can be extraordinarily effective, but might benefit only the minority of patients whose tumors are pre-infiltrated by T cells. Here, using lung adenocarcinoma mouse models, including genetic models, we show that autochthonous tumors that lacked T cell infiltration and resisted current treatment options could be successfully sensitized to host antitumor T cell immunity when appropriately selected immunogenic drugs (e.g., oxaliplatin combined with cyclophosphamide for treatment against tumors expressing oncogenic Kras and lacking Trp53) were used. The antitumor response was triggered by direct drug actions on tumor cells, relied on innate immune sensing through toll-like receptor 4 signaling, and ultimately depended on CD8(+) T cell antitumor immunity. Furthermore, instigating tumor infiltration by T cells sensitized tumors to checkpoint inhibition and controlled cancer durably. These findings indicate that the proportion of cancers responding to checkpoint therapy can be feasibly and substantially expanded by combining checkpoint blockade with immunogenic drugs.
Asunto(s)
Adenocarcinoma/terapia , Linfocitos T CD8-positivos/efectos de los fármacos , Inmunoterapia/métodos , Neoplasias Pulmonares/terapia , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Adenocarcinoma/inmunología , Animales , Línea Celular Tumoral , Sensibilización del Sistema Nervioso Central/efectos de los fármacos , Ciclofosfamida/administración & dosificación , Modelos Animales de Enfermedad , Quimioterapia/métodos , Genes cdc/efectos de los fármacos , Humanos , Inmunidad Innata , Neoplasias Pulmonares/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Compuestos Organoplatinos/administración & dosificación , Oxaliplatino , Receptor Toll-Like 4/metabolismoRESUMEN
OBJECTIVE: Exposure of the arterial endothelium to low and disturbed flow is a risk factor for the erosion and rupture of atherosclerotic plaques and aneurysms. Circulating and locally produced proteins are known to contribute to an altered composition of the extracellular matrix at the site of lesions, and to contribute to inflammatory processes within the lesions. We have previously shown that alternative splicing of FN (fibronectin) protects against flow-induced hemorrhage. However, the impact of alternative splicing of FN on extracellular matrix composition remains unknown. Approach and Results: Here, we perform quantitative proteomic analysis of the matrisome of murine carotid arteries in mice deficient in the production of FN splice isoforms containing alternative exons EIIIA and EIIIB (FN-EIIIAB null) after exposure to low and disturbed flow in vivo. We also examine serum-derived and endothelial-cell contributions to the matrisome in a simplified in vitro system. We found flow-induced differences in the carotid artery matrisome that were impaired in FN-EIIIAB null mice. One of the most interesting differences was reduced recruitment of FBLN1 (fibulin-1), abundant in blood and not locally produced in the intima. This defect was validated in our in vitro assay, where FBLN1 recruitment from serum was impaired by the absence of these alternatively spliced segments. CONCLUSIONS: Our results reveal the extent of the dynamic alterations in the matrisome in the acute response to low and disturbed flow and show how changes in the splicing of FN, a common response in vascular inflammation and remodeling, can affect matrix composition.
Asunto(s)
Empalme Alternativo , Arterias Carótidas/metabolismo , Estenosis Carotídea/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Remodelación Vascular , Animales , Arterias Carótidas/patología , Arterias Carótidas/fisiopatología , Estenosis Carotídea/patología , Estenosis Carotídea/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Matriz Extracelular/patología , Fibronectinas/deficiencia , Fibronectinas/genética , Mecanotransducción Celular , Ratones Noqueados , Isoformas de Proteínas , Flujo Sanguíneo Regional , Estrés MecánicoRESUMEN
Extracellular matrix (ECM) deposition is a hallmark of many diseases, including cancer and fibroses. To exploit the ECM as an imaging and therapeutic target, we developed alpaca-derived libraries of "nanobodies" against disease-associated ECM proteins. We describe here one such nanobody, NJB2, specific for an alternatively spliced domain of fibronectin expressed in disease ECM and neovasculature. We showed by noninvasive in vivo immuno-PET/CT imaging that NJB2 detects primary tumors and metastatic sites with excellent specificity in multiple models of breast cancer, including human and mouse triple-negative breast cancer, and in melanoma. We also imaged mice with pancreatic ductal adenocarcinoma (PDAC) in which NJB2 was able to detect not only PDAC tumors but also early pancreatic lesions called pancreatic intraepithelial neoplasias, which are challenging to detect by any current imaging modalities, with excellent clarity and signal-to-noise ratios that outperformed conventional 2-fluorodeoxyglucose PET/CT imaging. NJB2 also detected pulmonary fibrosis in a bleomycin-induced fibrosis model. We propose NJB2 and similar anti-ECM nanobodies as powerful tools for noninvasive detection of tumors, metastatic lesions, and fibroses. Furthermore, the selective recognition of disease tissues makes NJB2 a promising candidate for nanobody-based therapeutic applications.
Asunto(s)
Carcinogénesis/genética , Carcinoma Ductal Pancreático/diagnóstico por imagen , Matriz Extracelular/efectos de los fármacos , Neoplasias Pancreáticas/diagnóstico por imagen , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibrosis/patología , Humanos , Masculino , Ratones , Neoplasias Pancreáticas/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Radiofármacos/farmacología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Neoplasias PancreáticasRESUMEN
Chimeric antigen receptor (CAR) T cell therapy has been successful in clinical trials against hematological cancers, but has experienced challenges in the treatment of solid tumors. One of the main difficulties lies in a paucity of tumor-specific targets that can serve as CAR recognition domains. We therefore focused on developing VHH-based, single-domain antibody (nanobody) CAR T cells that target aspects of the tumor microenvironment conserved across multiple cancer types. Many solid tumors evade immune recognition through expression of checkpoint molecules, such as PD-L1, that down-regulate the immune response. We therefore targeted CAR T cells to the tumor microenvironment via the checkpoint inhibitor PD-L1 and observed a reduction in tumor growth, resulting in improved survival. CAR T cells that target the tumor stroma and vasculature through the EIIIB+ fibronectin splice variant, which is expressed by multiple tumor types and on neovasculature, are likewise effective in delaying tumor growth. VHH-based CAR T cells can thus function as antitumor agents for multiple targets in syngeneic, immunocompetent animal models. Our results demonstrate the flexibility of VHH-based CAR T cells and the potential of CAR T cells to target the tumor microenvironment and treat solid tumors.
Asunto(s)
Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Anticuerpos de Dominio Único/farmacología , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Ratones , Neoplasias Experimentales , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) has prominent extracellular matrix (ECM) that compromises treatments yet cannot be nonselectively disrupted without adverse consequences. ECM of PDAC, despite the recognition of its importance, has not been comprehensively studied in patients. In this study, we used quantitative mass spectrometry (MS)-based proteomics to characterize ECM proteins in normal pancreas and pancreatic intraepithelial neoplasia (PanIN)- and PDAC-bearing pancreas from both human patients and mouse genetic models, as well as chronic pancreatitis patient samples. We describe detailed changes in both abundance and complexity of matrisome proteins in the course of PDAC progression. We reveal an early up-regulated group of matrisome proteins in PanIN, which are further up-regulated in PDAC, and we uncover notable similarities in matrix changes between pancreatitis and PDAC. We further assigned cellular origins to matrisome proteins by performing MS on multiple lines of human-to-mouse xenograft tumors. We found that, although stromal cells produce over 90% of the ECM mass, elevated levels of ECM proteins derived from the tumor cells, but not those produced exclusively by stromal cells, tend to correlate with poor patient survival. Furthermore, distinct pathways were implicated in regulating expression of matrisome proteins in cancer cells and stromal cells. We suggest that, rather than global suppression of ECM production, more precise ECM manipulations, such as targeting tumor-promoting ECM proteins and their regulators in cancer cells, could be more effective therapeutically.
Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Matriz Extracelular/metabolismo , Células del Estroma/metabolismo , Adulto , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatitis Crónica/patología , Proteómica/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias PancreáticasRESUMEN
BACKGROUND: The extracellular matrix (ECM) is a fundamental component of multicellular organisms that orchestrates developmental processes and controls cell and tissue organization. We previously identified the novel ECM protein SNED1 as a promoter of breast cancer metastasis and showed that its level of expression negatively correlated with breast cancer patient survival. Here, we sought to identify the roles of SNED1 during murine development. RESULTS: We generated two novel Sned1 knockout mouse strains and showed that Sned1 is essential since homozygous ablation of the gene led to early neonatal lethality. Phenotypic analysis of the surviving knockout mice revealed a role for SNED1 in the development of craniofacial and skeletal structures since Sned1 knockout resulted in growth defects, nasal cavity occlusion, and craniofacial malformations. Sned1 is widely expressed in embryos, notably by cell populations undergoing epithelial-to-mesenchymal transition, such as the neural crest cells. We further show that mice with a neural-crest-cell-specific deletion of Sned1 survive, but display facial anomalies partly phenocopying the global knockout mice. CONCLUSIONS: Our results demonstrate requisite roles for SNED1 during development and neonatal survival. Importantly, the deletion of 2q37.3 in humans, a region that includes the SNED1 locus, has been associated with facial dysmorphism and short stature.
Asunto(s)
Proteínas de la Matriz Extracelular/fisiología , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Anomalías Craneofaciales/genética , Genes Letales , Trastornos del Crecimiento/genética , Mandíbula/anomalías , Ratones , Ratones Noqueados , Cavidad Nasal/anomalíasRESUMEN
In the developing peripheral nervous system, Schwann cells (SCs) extend their processes to contact, sort, and myelinate axons. The mechanisms that contribute to the interaction between SCs and axons are just beginning to be elucidated. Using a SC-neuron coculture system, we demonstrate that Arg-Gly-Asp (RGD) peptides that inhibit αV -containing integrins delay the extension of SCs elongating on axons. αV integrins in SC localize to sites of contact with axons and are expressed early in development during radial sorting and myelination. Short interfering RNA-mediated knockdown of the αV integrin subunit also delays SC extension along axons in vitro, suggesting that αV -containing integrins participate in axo-glial interactions. However, mice lacking the αV subunit in SCs, alone or in combination with the potentially compensating α5 subunit, or the αV partners ß3 or ß8 , myelinate normally during development and remyelinate normally after nerve crush, indicating that overlapping or compensatory mechanisms may hide the in vivo role of RGD-binding integrins.
Asunto(s)
Células de Schwann , Animales , Axones , Integrina alfaV , Integrinas , Ratones , OligopéptidosRESUMEN
Systemic inflammation occurring around the course of tumor progression and treatment are often correlated with adverse oncological outcomes. As such, it is suspected that neutrophils, the first line of defense against infection, may play important roles in linking inflammation and metastatic seeding. To decipher the dynamic roles of inflamed neutrophils during hematogenous dissemination, we employ a multiplexed microfluidic model of the human microvasculature enabling physiologically relevant transport of circulating cells combined with real-time, high spatial resolution observation of heterotypic cell-cell interactions. LPS-stimulated neutrophils (PMNs) and tumor cells (TCs) form heterotypic aggregates under flow, and arrest due to both mechanical trapping and neutrophil-endothelial adhesions. Surprisingly, PMNs are not static following aggregation, but exhibit a confined migration pattern near TC-PMN clusters. We discover that PMNs are chemotactically confined by self-secreted IL-8 and tumor-derived CXCL-1, which are immobilized by the endothelial glycocalyx. This results in significant neutrophil sequestration with arrested tumor cells, leading to the spatial localization of neutrophil-derived IL-8, which also contributes to increasing the extravasation potential of adjacent tumor cells through modulation of the endothelial barrier. Strikingly similar migration patterns and extravasation behaviors were also observed in an in vivo zebrafish model upon PMN-tumor cell coinjection into the embryo vasculature. These insights into the temporal dynamics of intravascular tumor-PMN interactions elucidate the mechanisms through which inflamed neutrophils can exert proextravasation effects at the distant metastatic site.
Asunto(s)
Quimiocina CXCL1/inmunología , Quimiotaxis/inmunología , Interleucina-8/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Neutrófilos/inmunología , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Quimiotaxis/efectos de los fármacos , Humanos , Lipopolisacáridos/farmacología , Técnicas Analíticas Microfluídicas/métodos , Neoplasias/patología , Neutrófilos/patología , Pez CebraRESUMEN
When properly employed, targeted therapies are effective cancer treatments. However, the development of such therapies requires the identification of targetable drivers of cancer development and metastasis. The expression and nuclear localization of the transcriptional coactivators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are increased in many human cancers, and experimental evidence indicates that aberrant YAP or TAZ activation drives tumor formation and metastasis. Although these findings make YAP and TAZ appealing therapeutic targets, both have important functions in adult tissues, so directly targeting them could cause adverse effects. The identification of pathways active in cancer cells and required for YAP/TAZ activity could provide a way to inhibit YAP and TAZ. Here, we show that SRC proto-oncogene, nonreceptor tyrosine kinase (SRC) is an important driver of YAP/TAZ activity in human breast cancer and melanoma cells. SRC activation increased YAP/TAZ activity and the expression of YAP/TAZ-regulated genes. In contrast, SRC inhibition or knockdown repressed both YAP/TAZ activity and the expression of YAP/TAZ-regulated genes. We also show that SRC increases the activity of YAP and TAZ by repressing large tumor suppressor homolog (LATS), and we identify the GTPase-activating protein GIT ArfGAP 1 (GIT1) as an SRC effector that regulates both YAP and TAZ. Importantly, we demonstrate that SRC-mediated YAP/TAZ activity promotes tumor growth and enhances metastasis and that SRC-dependent tumor progression depends, at least in part, on YAP and TAZ. Our findings suggest that therapies targeting SRC could help manage some YAP/TAZ-dependent cancers.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Experimentales/metabolismo , Fosfoproteínas/metabolismo , Familia-src Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Fosfoproteínas/genética , Proto-Oncogenes Mas , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Familia-src Quinasas/genéticaRESUMEN
The United States is a federal union with separate state jurisdictions. In part owing to the sometimes heated debate about public support for human embryonic stem-cell (ESC) research, there has been restricted federal support and little central regulation of this research to date. Instead, guidelines developed by scientific organizations have set principles for oversight and good practice for this research. These guidelines are functioning well, have influenced developing state regulations and, one hopes, will affect any future federal regulation.
Asunto(s)
Investigaciones con Embriones/legislación & jurisprudencia , Células Madre Embrionarias/citología , Regulación Gubernamental , Política Pública , Línea Celular , Gobierno Federal , Guías como Asunto , Humanos , Sociedades Científicas , Estados UnidosRESUMEN
BACKGROUND: The prepsoas lateral approach for spinal fusion, oblique lateral lumbar interbody fusion (OLIF), is considered one of the minimally invasive spinal fusion methods and is gaining popularity due to improved outcomes with copious supporting evidence. To date, no publication has studied the various positions of the left hip in actual patients which might affect the retroperitoneal oblique corridor (ROC). The study aimed to find the relevancy of the left hip position and the size of ROC. METHODS: We recruited 40 consecutive patients who needed diagnostic MRI from the out-patient clinic. MRI scan from L2 to L5 was performed in the supine, right lateral decubitus with hip flexion, and right lateral decubitus with hip in a neutral position. The retroperitoneal oblique corridor (ROC) was measured at the intervertebral disc level and compared. RESULTS: ROC of the hip in neutral position was significantly larger than hip flexion in all levels (p < 0.05); there was no significant difference in the ROC among levels (p = 0.22). ROC seems to be largest at L2/3 followed by L3/4 and L4/5 respectively in all positions. CONCLUSIONS: The retroperitoneal oblique corridors of L2 to L5 were significantly increased when the hip is in the neutral position, while the psoas cross-sectional area and anterior thickness were minimized in this position. Surgeons might benefit from a neutral position of the left hip in the oblique lateral lumbar interbody fusion (OLIF) procedure. In conclusion, the retroperitoneal oblique corridors of L2 to L5 were significantly increased when the hip is in the neutral position, while the psoas cross-sectional area and anterior thickness were minimized in this position. Surgeons might benefit from a neutral position of the left hip in the oblique lateral lumbar interbody fusion procedure.
Asunto(s)
Vértebras Lumbares , Fusión Vertebral , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Imagen por Resonancia Magnética , Músculos Psoas/diagnóstico por imagen , Músculos Psoas/cirugía , Espacio Retroperitoneal/diagnóstico por imagen , Espacio Retroperitoneal/cirugíaRESUMEN
The extracellular microenvironment is an integral component of normal and diseased tissues that is poorly understood owing to its complexity. To investigate the contribution of the microenvironment to lung fibrosis and adenocarcinoma progression, two pathologies characterized by excessive stromal expansion, we used mouse models to characterize the extracellular matrix (ECM) composition of normal lung, fibrotic lung, lung tumors, and metastases. Using quantitative proteomics, we identified and assayed the abundance of 113 ECM proteins, which revealed robust ECM protein signatures unique to fibrosis, primary tumors, or metastases. These analyses indicated significantly increased abundance of several S100 proteins, including Fibronectin and Tenascin-C (Tnc), in primary lung tumors and associated lymph node metastases compared with normal tissue. We further showed that Tnc expression is repressed by the transcription factor Nkx2-1, a well-established suppressor of metastatic progression. We found that increasing the levels of Tnc, via CRISPR-mediated transcriptional activation of the endogenous gene, enhanced the metastatic dissemination of lung adenocarcinoma cells. Interrogation of human cancer gene expression data revealed that high TNC expression correlates with worse prognosis for lung adenocarcinoma, and that a three-gene expression signature comprising TNC, S100A10, and S100A11 is a robust predictor of patient survival independent of age, sex, smoking history, and mutational load. Our findings suggest that the poorly understood ECM composition of the fibrotic and tumor microenvironment is an underexplored source of diagnostic markers and potential therapeutic targets for cancer patients.
Asunto(s)
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Proteómica/métodos , Tenascina/fisiología , Adenocarcinoma/metabolismo , Animales , Anexina A2/metabolismo , Sistemas CRISPR-Cas , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis Multivariante , Metástasis de la Neoplasia , Pronóstico , Proteínas S100/metabolismo , Factor Nuclear Tiroideo 1/metabolismo , Resultado del Tratamiento , Microambiente TumoralRESUMEN
Integrins are a large family of heterodimeric transmembrane receptors differentially expressed on almost all metazoan cells. Integrin ß subunits contain a highly conserved plexin-semaphorin-integrin (PSI) domain. The CXXC motif, the active site of the protein-disulfide-isomerase (PDI) family, is expressed twice in this domain of all integrins across species. However, the role of the PSI domain in integrins and whether it contains thiol-isomerase activity have not been explored. Here, recombinant PSI domains of murine ß3, and human ß1 and ß2 integrins were generated and their PDI-like activity was demonstrated by refolding of reduced/denatured RNase. We identified that both CXXC motifs of ß3 integrin PSI domain are required to maintain its optimal PDI-like activity. Cysteine substitutions (C13A and C26A) of the CXXC motifs also significantly decreased the PDI-like activity of full-length human recombinant ß3 subunit. We further developed mouse anti-mouse ß3 PSI domain monoclonal antibodies (mAbs) that cross-react with human and other species. These mAbs inhibited αIIbß3 PDI-like activity and its fibrinogen binding. Using single-molecular Biomembrane-Force-Probe assays, we demonstrated that inhibition of αIIbß3 endogenous PDI-like activity reduced αIIbß3-fibrinogen interaction, and these anti-PSI mAbs inhibited fibrinogen binding via different levels of both PDI-like activity-dependent and -independent mechanisms. Importantly, these mAbs inhibited murine/human platelet aggregation in vitro and ex vivo, and murine thrombus formation in vivo, without significantly affecting bleeding time or platelet count. Thus, the PSI domain is a potential regulator of integrin activation and a novel target for antithrombotic therapies. These findings may have broad implications for all integrin functions, and cell-cell and cell-matrix interactions.
Asunto(s)
Cadenas beta de Integrinas/inmunología , Proteína Disulfuro Isomerasas/inmunología , Secuencias de Aminoácidos , Animales , Anticuerpos Monoclonales/farmacología , Dominio Catalítico , Moléculas de Adhesión Celular , Humanos , Ratones , Proteínas del Tejido Nervioso , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Proteínas Recombinantes , Semaforinas , Trombosis/prevención & controlRESUMEN
The RGD-binding α5 and αv integrins have been shown to be key regulators of vascular smooth muscle cell (vSMC) function in vitro. However, their role on vSMCs during vascular development in vivo remains unclear. To address this issue, we have generated mice that lack α5, αv or both α5 and αv integrins on their vSMCs, using the SM22α-Cre transgenic mouse line. To our surprise, neither α5 nor αv mutants displayed any obvious vascular defects during embryonic development. By contrast, mice lacking both α5 and αv integrins developed interrupted aortic arches, large brachiocephalic/carotid artery aneurysms and cardiac septation defects, but developed extensive and apparently normal vasculature in the skin. Cardiovascular defects were also found, along with cleft palates and ectopically located thymi, in Wnt1-Cre α5/αv mutants, suggesting that α5 and αv cooperate on neural crest-derived cells to control the remodelling of the pharyngeal arches and the septation of the heart and outflow tract. Analysis of cultured α5/αv-deficient vSMCs suggests that this is achieved, at least in part, through proper assembly of RGD-containing extracellular matrix proteins and the correct incorporation and activation of latent TGF-ß.
Asunto(s)
Integrina alfa5/metabolismo , Integrina alfaV/metabolismo , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Animales , Sistema Cardiovascular/embriología , Sistema Cardiovascular/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Femenino , Corazón/embriología , Integrina alfa5/genética , Integrina alfaV/genética , Masculino , Ratones , Ratones TransgénicosRESUMEN
The extracellular matrix (ECM) is a complex meshwork of insoluble fibrillar proteins and signaling factors interacting together to provide architectural and instructional cues to the surrounding cells. Alterations in ECM organization or composition and excessive ECM deposition have been observed in diseases such as fibrosis, cardiovascular diseases, and cancer. We provide here optimized protocols to solubilize ECM proteins from normal or tumor tissues, digest the proteins into peptides, analyze ECM peptides by mass spectrometry, and interpret the mass spectrometric data. In addition, we present here two novel R-script-based web tools allowing rapid annotation and relative quantification of ECM proteins, peptides, and intensity/abundance in mass spectrometric data output files. We illustrate this protocol with ECMs obtained from two pairs of tissues, which differ in ECM content and cellularity: triple-negative breast cancer and adjacent mammary tissue, and omental metastasis from high-grade serous ovarian cancer and normal omentum. The complete proteomics data set generated in this study has been deposited to the public repository ProteomeXchange with the data set identifier: PXD005554.
Asunto(s)
Matriz Extracelular/química , Neoplasias Ováricas/química , Proteómica/métodos , Neoplasias de la Mama Triple Negativas/química , Mama/citología , Matriz Extracelular/patología , Proteínas de la Matriz Extracelular/análisis , Femenino , Humanos , Espectrometría de Masas , Anotación de Secuencia Molecular , Epiplón/citología , Neoplasias Ováricas/secundario , Neoplasias Ováricas/ultraestructura , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/ultraestructuraRESUMEN
Fibronectin containing alternatively spliced EIIIA and EIIIB domains is largely absent from mature quiescent vessels in adults, but is highly expressed around blood vessels during developmental and pathological angiogenesis. The precise functions of fibronectin and its splice variants during developmental angiogenesis however remain unclear due to the presence of cardiac, somitic, mesodermal and neural defects in existing global fibronectin KO mouse models. Using a rare family of surviving EIIIA EIIIB double KO mice, as well as inducible endothelial-specific fibronectin-deficient mutant mice, we show that vascular development in the neonatal retina is regulated in an autocrine manner by endothelium-derived fibronectin, and requires both EIIIA and EIIIB domains and the RGD-binding α5 and αv integrins for its function. Exogenous sources of fibronectin do not fully substitute for the autocrine function of endothelial fibronectin, demonstrating that fibronectins from different sources contribute differentially to specific aspects of angiogenesis.
Asunto(s)
Comunicación Autocrina , Endotelio/metabolismo , Fibronectinas/metabolismo , Morfogénesis , Vasos Retinianos/crecimiento & desarrollo , Vasos Retinianos/metabolismo , Empalme Alternativo/genética , Animales , Animales Recién Nacidos , Tipificación del Cuerpo , Recuento de Células , Células Endoteliales/metabolismo , Integrinas/metabolismo , Ratones Endogámicos C57BL , Mutación/genéticaRESUMEN
BACKGROUND: Metastasis is a major clinical problem whose biology is not yet fully understood. This lack of understanding is especially true for the events at the metastatic site, which include arrest, extravasation, and growth into macrometastases. Intravital imaging is a powerful technique that has shown great promise in increasing our understanding of these events. To date, most intravital imaging studies have been performed in mice, which has limited its adoption. Zebrafish are also a common system for the intravital imaging of metastasis. However, as imaging in embryos is technically simpler, relatively few studies have used adult zebrafish to study metastasis and none have followed individual cells at the metastatic site over time. The aim of this study was to demonstrate that adult casper zebrafish offer a convenient model system for performing intravital imaging of the metastatic site over time with single-cell resolution. METHODS: ZMEL1 zebrafish melanoma cells were injected into 6 to 10-week-old casper fish using an intravenous injection protocol. Because casper fish are transparent even as adults, they could be imaged without surgical intervention. Individual cells were followed over the course of 2 weeks as they arrested, extravasated, and formed macroscopic metastases. RESULTS: Our injection method reliably delivered cells into circulation and led to the formation of tumors in multiple organs. Cells in the skin and sub-dermal muscle could be imaged at high resolution over 2 weeks using confocal microscopy. Arrest was visualized and determined to be primarily due to size restriction. Following arrest, extravasation was seen to occur between 1 and 6 days post-injection. Once outside of the vasculature, cells were observed migrating as well as forming protrusions. CONCLUSIONS: Casper fish are a useful model for studying the events at the metastatic site using intravital imaging. The protocols described in this study are relatively simple. Combined with the reasonably low cost of zebrafish, they offer to increase access to intravital imaging.
Asunto(s)
Microscopía Intravital/métodos , Melanoma/diagnóstico por imagen , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Melanoma/patología , Ratones , Microscopía Confocal , Metástasis de la Neoplasia , Pez CebraRESUMEN
During metastasis, host cells are recruited to disseminated tumor cells to form specialized microenvironments ("niches") that promote metastatic progression, but the mechanisms guiding the assembly of these niches are largely unknown. Tumor cells may autonomously recruit host cells or, alternatively, host cell-to-host cell interactions may guide the formation of these prometastatic microenvironments. Here, we show that platelet-derived rather than tumor cell-derived signals are required for the rapid recruitment of granulocytes to tumor cells to form "early metastatic niches." Granulocyte recruitment relies on the secretion of CXCL5 and CXCL7 chemokines by platelets upon contact with tumor cells. Blockade of the CXCL5/7 receptor CXCR2, or transient depletion of either platelets or granulocytes prevents the formation of early metastatic niches and significantly reduces metastatic seeding and progression. Thus, platelets recruit granulocytes and guide the formation of early metastatic niches, which are crucial for metastasis.