Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 33(7): 1726-39, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27188529

RESUMEN

Long chain polyunsaturated fatty acids (LCPUFA) are bioactive components of membrane phospholipids and serve as substrates for signaling molecules. LCPUFA can be obtained directly from animal foods or synthesized endogenously from 18 carbon precursors via the FADS2 coded enzyme. Vegans rely almost exclusively on endogenous synthesis to generate LCPUFA and we hypothesized that an adaptive genetic polymorphism would confer advantage. The rs66698963 polymorphism, a 22-bp insertion-deletion within FADS2, is associated with basal FADS1 expression, and coordinated induction of FADS1 and FADS2 in vitro. Here, we determined rs66698963 genotype frequencies from 234 individuals of a primarily vegetarian Indian population and 311 individuals from the US. A much higher I/I genotype frequency was found in Indians (68%) than in the US (18%). Analysis using 1000 Genomes Project data confirmed our observation, revealing a global I/I genotype of 70% in South Asians, 53% in Africans, 29% in East Asians, and 17% in Europeans. Tests based on population divergence, site frequency spectrum, and long-range haplotype consistently point to positive selection encompassing rs66698963 in South Asian, African, and some East Asian populations. Basal plasma phospholipid arachidonic acid (ARA) status was 8% greater in I/I compared with D/D individuals. The biochemical pathway product-precursor difference, ARA minus linoleic acid, was 31% and 13% greater for I/I and I/D compared with D/D, respectively. This study is consistent with previous in vitro data suggesting that the insertion allele enhances n-6 LCPUFA synthesis and may confer an adaptive advantage in South Asians because of the traditional plant-based diet practice.


Asunto(s)
Ácido Araquidónico/biosíntesis , Ácido Graso Desaturasas/genética , Selección Genética , Adulto , Alelos , Ácido Araquidónico/genética , Ácido Araquidónico/metabolismo , Bases de Datos de Ácidos Nucleicos , delta-5 Desaturasa de Ácido Graso , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Insaturados/genética , Ácidos Grasos Insaturados/metabolismo , Femenino , Frecuencia de los Genes/genética , Variación Genética , Haplotipos , Humanos , Mutación INDEL , Masculino , Fosfolípidos/genética , Fosfolípidos/metabolismo , Polimorfismo de Nucleótido Simple , Adulto Joven
2.
Artículo en Inglés | MEDLINE | ID: mdl-30041907

RESUMEN

INTRODUCTION: The only known non-pharmacological means to alter long chain polyunsaturated fatty acid (LCPUFA) abundance in mammalian tissue is by altering substrate fatty acid ratios. Alternative mRNA splicing is increasingly recognized as a modulator of protein structure and function. Here we report identification of a novel alternative transcript (AT) of fatty acid desaturase 2 (FADS2) that inhibits production of omega-3 but not omega-6 LCPUFA, discovered during study of ATs in human milk fat globules (MFG). METHODS: Human breastmilk collected from a single donor was used to isolate MFG. An mRNA-sequencing library was constructed from the total RNA isolated from the MFG. The constructed library was sequenced using an Illumina HiSeq instrument operating in high output mode. Expression levels of evolutionary conserved FADSAT were measured using cDNA from MFG by semi-quantitative RT-PCR assay. RESULTS: RNA sequencing revealed >15,000 transcripts, including moderate expression of the FADS2 classical transcript (CS). A novel FADS2 alternative transcript (FADS2AT2) with 386 amino acids was discovered. When FADS2AT2 was transiently transfected into MCF7 cells stably expressing FADS2, delta-6 desaturation (D6D) of alpha-linolenic acid 18:3n-3 → 18:4n-3 was suppressed as were downstream products 20:4n-3 and 20:5n-3. In contrast, no significant effect on D6D of linoleic acid 18:2n-6 → 18:3n-6 or downstream products was observed. FADS2, FADS2AT1 and 5 out of 8 known FADS3AT were expressed in MFG. FADS1, FADS3AT3, and FADS3AT5 are undetectable. CONCLUSION: The novel, noncatalytic FADS2AT2 regulates FADS2CS-mediated Δ6-desaturation of omega-3 but not omega-6 PUFA biosynthesis. This spliced isoform mediated interaction is the first molecular mechanism by which desaturation of one PUFA family but not the other is modulated.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Leche Humana/enzimología , Ácido alfa-Linolénico/metabolismo , delta-5 Desaturasa de Ácido Graso , Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-6/genética , Ácidos Grasos Omega-6/metabolismo , Glucolípidos/genética , Glicoproteínas/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Gotas Lipídicas , Células MCF-7 , Ácido alfa-Linolénico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA