Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Genome Res ; 33(6): 957-971, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414574

RESUMEN

In this paper, we developed a highly sensitive approach to detect interchromosomal rearrangements in cattle by searching for abnormal linkage disequilibrium patterns between markers located on different chromosomes in large paternal half-sib families genotyped as part of routine genomic evaluations. We screened 5571 families of artificial insemination sires from 15 breeds and revealed 13 putative interchromosomal rearrangements, 12 of which were validated by cytogenetic analysis and long-read sequencing. These consisted of one Robertsonian fusion, 10 reciprocal translocations, and the first case of insertional translocation reported in cattle. Taking advantage of the wealth of data available in cattle, we performed a series of complementary analyses to define the exact nature of these rearrangements, investigate their origins, and search for factors that may have favored their occurrence. We also evaluated the risks to the livestock industry and showed significant negative effects on several traits in the sires and in their balanced or aneuploid progeny compared with wild-type controls. Thus, we present the most comprehensive and thorough screen for interchromosomal rearrangements compatible with normal spermatogenesis in livestock species. This approach is readily applicable to any population that benefits from large genotype data sets, and will have direct applications in animal breeding. Finally, it also offers interesting prospects for basic research by allowing the detection of smaller and rarer types of chromosomal rearrangements than GTG banding, which are interesting models for studying gene regulation and the organization of genome structure.


Asunto(s)
Genoma , Translocación Genética , Bovinos/genética , Masculino , Animales , Genotipo , Fenotipo , Genómica
2.
BMC Biol ; 22(1): 141, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926709

RESUMEN

BACKGROUND: The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii, and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. RESULTS: We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex-determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplicates (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been likely lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome 18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variations (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex-determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in the testis than in the ovary. CONCLUSIONS: Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.


Asunto(s)
Evolución Molecular , Procesos de Determinación del Sexo , Animales , Procesos de Determinación del Sexo/genética , Masculino , Femenino , Percas/genética , Filogenia , Receptores de Péptidos/genética , Genoma , Receptores de Factores de Crecimiento Transformadores beta
3.
Nucleic Acids Res ; 48(3): 1206-1224, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31799607

RESUMEN

The histone demethylase LSD1 is a key chromatin regulator that is often deregulated in cancer. Its ortholog, dLsd1 plays a crucial role in Drosophila oogenesis; however, our knowledge of dLsd1 function is insufficient to explain its role in the ovary. Here, we have performed genome-wide analysis of dLsd1 binding in the ovary, and we document that dLsd1 is preferentially associated to the transcription start site of developmental genes. We uncovered an unanticipated interplay between dLsd1 and the GATA transcription factor Serpent and we report an unexpected role for Serpent in oogenesis. Besides, our transcriptomic data show that reducing dLsd1 levels results in ectopic transposable elements (TE) expression correlated with changes in H3K4me2 and H3K9me2 at TE loci. In addition, our results suggest that dLsd1 is required for Piwi dependent TE silencing. Hence, we propose that dLsd1 plays crucial roles in establishing specific gene expression programs and in repressing transposons during oogenesis.


Asunto(s)
Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Factores de Transcripción GATA/genética , Oogénesis/genética , Oxidorreductasas N-Desmetilantes/genética , Animales , Proteínas Argonautas/genética , Cromatina/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Genes del Desarrollo/genética , Histonas/genética , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Sitio de Iniciación de la Transcripción
4.
PLoS One ; 19(8): e0308011, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39110672

RESUMEN

Obtaining high-quality DNA suitable for long-read sequencing can be difficult for many types of tissues and cells, and it is a key step in current genomic studies. The challenge is even greater when it comes to isolating genomic DNA from mammalian spermatozoa, as DNA is tightly packed into a cell with a robust membrane rich in disulfide bonds. Here we describe a method for isolating high molecular weight DNA from Bovine commercial semen straws. This protocol includes a cleaning step to remove diluents and preservatives used for the long-term storage of the semen, which may affect long read sequencing. It is based on a simple salting-out method and avoid the use of spin columns, strong mixing or intensive centrifugation, in order to limit DNA fragmentation. However, we have adapted this protocol to facilitate the disruption of cell membranes and disulfide bonds with strong chaotropic and reducing agents. The average size of the fragments produced was approximately 49 kb, ranging from 25 to 85 kb, according to the femto pulse profiles.This method was used to isolate DNA from semen straws, more than 80 of them were successfully sequenced using the Continuous Long-Read (CLR) sequencing mode on the PacBio SequelII platform to study genome diversity and notably to detect large structural variations within genomes.


Asunto(s)
ADN , Genoma , Semen , Análisis de Secuencia de ADN , Animales , Bovinos , Masculino , ADN/aislamiento & purificación , ADN/genética , Análisis de Secuencia de ADN/métodos , Espermatozoides , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
5.
Genome Biol ; 25(1): 248, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39343954

RESUMEN

BACKGROUND: Dairy cattle breeds are populations of limited effective size, subject to recurrent outbreaks of recessive defects that are commonly studied using positional cloning. However, this strategy, based on the observation of animals with characteristic features, may overlook a number of conditions, such as immune or metabolic genetic disorders, which may be confused with pathologies of environmental etiology. RESULTS: We present a data mining framework specifically designed to detect recessive defects in livestock that have been previously missed due to a lack of specific signs, incomplete penetrance, or incomplete linkage disequilibrium. This approach leverages the massive data generated by genomic selection. Its basic principle is to compare the observed and expected numbers of homozygotes for sliding haplotypes in animals with different life histories. Within three cattle breeds, we report 33 new loci responsible for increased risk of juvenile mortality and present a series of validations based on large-scale genotyping, clinical examination, and functional studies for candidate variants affecting the NOA1, RFC5, and ITGB7 genes. In particular, we describe disorders associated with NOA1 and RFC5 mutations for the first time in vertebrates. CONCLUSIONS: The discovery of these many new defects will help to characterize the genetic basis of inbreeding depression, while their management will improve animal welfare and reduce losses to the industry.


Asunto(s)
Genes Recesivos , Animales , Bovinos , Minería de Datos , Enfermedades de los Bovinos/genética , Haplotipos
6.
PLoS Genet ; 6(12): e1001260, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21203501

RESUMEN

A >300 kb cis-regulatory region is required for the proper expression of the three bithorax complex (BX-C) homeotic genes. Based on genetic and transgenic analysis, a model has been proposed in which the numerous BX-C cis-regulatory elements are spatially restricted through the activation or repression of parasegment-specific chromatin domains. Particular early embryonic enhancers, called initiators, have been proposed to control this complex process. Here, in order to better understand the process of domain activation, we have undertaken a systematic in situ dissection of the iab-6 cis-regulatory domain using a new method, called InSIRT. Using this method, we create and genetically characterize mutations affecting iab-6 function, including mutations specifically modifying the iab-6 initiator. Through our mutagenesis of the iab-6 initiator, we provide strong evidence that initiators function not to directly control homeotic gene expression but rather as domain control centers to determine the activity state of the enhancers and silencers within a cis-regulatory domain.


Asunto(s)
Drosophila/embriología , Drosophila/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutagénesis , Elementos Reguladores de la Transcripción
7.
Sci Data ; 10(1): 369, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291142

RESUMEN

Inspired by the production of reference data sets in the Genome in a Bottle project, we sequenced one Charolais heifer with different technologies: Illumina paired-end, Oxford Nanopore, Pacific Biosciences (HiFi and CLR), 10X Genomics linked-reads, and Hi-C. In order to generate haplotypic assemblies, we also sequenced both parents with short reads. From these data, we built two haplotyped trio high quality reference genomes and a consensus assembly, using up-to-date software packages. The assemblies obtained using PacBio HiFi reaches a size of 3.2 Gb, which is significantly larger than the 2.7 Gb ARS-UCD1.2 reference. The BUSCO score of the consensus assembly reaches a completeness of 95.8%, among highly conserved mammal genes. We also identified 35,866 structural variants larger than 50 base pairs. This assembly is a contribution to the bovine pangenome for the "Charolais" breed. These datasets will prove to be useful resources enabling the community to gain additional insight on sequencing technologies for applications such as SNP, indel or structural variant calling, and de novo assembly.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Bovinos , Femenino , Benchmarking , Genoma , Análisis de Secuencia de ADN
8.
Science ; 379(6632): 572-575, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36758078

RESUMEN

Accurate species phylogenies are a prerequisite for all evolutionary research. Teleosts are the largest and most diversified group of extant vertebrates, but relationships among their three oldest extant lineages remain unresolved. On the basis of seven high-quality new genome assemblies in Elopomorpha (tarpons, eels), we revisited the topology of the deepest branches of the teleost phylogeny using independent gene sequence and chromosomal rearrangement phylogenomic approaches. These analyses converged to a single scenario that unambiguously places the Elopomorpha and Osteoglossomorpha (arapaima, elephantnose fish) in a monophyletic sister group to all other teleosts, i.e., the Clupeocephala lineage (zebrafish, medaka). This finding resolves more than 50 years of controversy on the evolutionary relationships of these lineages and highlights the power of combining different levels of genome-wide information to solve complex phylogenies.


Asunto(s)
Evolución Biológica , Peces , Animales , Anguilas/clasificación , Anguilas/genética , Peces/clasificación , Peces/genética , Genoma , Filogenia , Pez Cebra/clasificación , Pez Cebra/genética
9.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014084

RESUMEN

The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplications (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome-18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variants (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in testis than ovary. Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.

10.
Mol Ecol Resour ; 22(7): 2685-2700, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35569134

RESUMEN

The Pacific halibut (Hippoglossus stenolepis) is a key species in the North Pacific Ocean and Bering Sea ecosystems, where it also supports important fisheries. However, the lack of genomic resources limits our understanding of evolutionary, environmental and anthropogenic forces affecting key life history characteristics of Pacific halibut and prevents the application of genomic tools in fisheries management and conservation efforts. In the present study, we report on the first generation of a high-quality chromosome-level assembly of the Pacific halibut genome, with an estimated size of 602 Mb, 24 chromosome-length scaffolds that contain 99.8% of the assembly and a N50 scaffold length of 27.3 Mb. In the first application of this important resource, we conducted genome-wide analyses of sex-specific genetic variation by pool sequencing and characterized a potential sex-determining region in chromosome 9 with a high density of female-specific SNPs. Within this region, we identified the bmpr1ba gene as a potential candidate for master sex-determining (MSD) gene. bmpr1ba is a member of the TGF-ß family that in teleosts has provided the largest number of MSD genes, including a paralogue of this gene in Atlantic herring. The genome assembly constitutes an essential resource for future studies on Pacific halibut population structure and dynamics, evolutionary history and responses to environmental and anthropogenic influences. Furthermore, the genomic location of the sex-determining region in Pacific halibut has been identified and a putative candidate MSD gene has been proposed, providing further support for the rapid evolution of sex-determining mechanisms in teleost fish.


Asunto(s)
Lenguado , Animales , Cromosomas , Ecosistema , Femenino , Peces/genética , Lenguado/genética , Estudio de Asociación del Genoma Completo , Genómica , Masculino
11.
Mol Ecol Resour ; 22(6): 2411-2428, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35429227

RESUMEN

The evolution of sex determination (SD) in teleosts is amazingly dynamic, as reflected by the variety of different master sex-determining genes identified. Pangasiids are economically important catfishes in South Asian countries, but little is known about their SD system. Here, we generated novel genomic resources for 12 Pangasiids and characterized their SD system. Based on a Pangasianodon hypophthalmus chromosome-scale genome assembly, we identified an anti-Müllerian hormone receptor type Ⅱ gene (amhr2) duplication, which was further characterized as being sex-linked in males and expressed only in testes. These results point to a Y chromosome male-specific duplication (amhr2by) of the autosomal amhr2a. Sequence annotation revealed that the P. hypophthalmus Amhr2by is truncated in its N-terminal domain, lacking the cysteine-rich extracellular part of the receptor that is crucial for ligand binding, suggesting a potential route for its neofunctionalization. Reference-guided assembly of 11 additional Pangasiids, along with sex-linkage studies, revealed that this truncated amhr2by duplication is a male-specific conserved gene in Pangasiids. Reconstructions of the amhr2 phylogeny suggested that amhr2by arose from an ancient duplication/insertion event at the root of the Siluroidei radiation that is dated to ~100 million years ago. Together these results bring multiple lines of evidence supporting that amhr2by is an ancient and conserved master sex-determining gene in Pangasiids, a finding that highlights the recurrent use of the transforming growth factor ß pathway, which is often used for the recruitment of teleost master SD genes, and provides another empirical case towards firther understanding of dynamics of SD systems.


Asunto(s)
Bagres , Animales , Bagres/genética , Masculino , Filogenia , Receptores de Péptidos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Cromosoma Y/genética
12.
Sci Rep ; 11(1): 21544, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732792

RESUMEN

Arapaima gigas is one of the largest freshwater fish species of high ecological and economic importance. Overfishing and habitat destruction are severe threats to the remaining wild populations. By incorporating a chromosomal Hi-C contact map, we improved the arapaima genome assembly to chromosome-level, revealing an unexpected high degree of chromosome rearrangements during evolution of the bonytongues (Osteoglossiformes). Combining this new assembly with pool-sequencing of male and female genomes, we identified id2bbY, a duplicated copy of the inhibitor of DNA binding 2b (id2b) gene on the Y chromosome as candidate male sex-determining gene. A PCR-test for id2bbY was developed, demonstrating that this gene is a reliable male-specific marker for genotyping. Expression analyses showed that this gene is expressed in juvenile male gonads. Its paralog, id2ba, exhibits a male-biased expression in immature gonads. Transcriptome analyses and protein structure predictions confirm id2bbY as a prime candidate for the master sex-determiner. Acting through the TGFß signaling pathway, id2bbY from arapaima would provide the first evidence for a link of this family of transcriptional regulators to sex determination. Our study broadens our current understanding about the evolution of sex determination genetic networks and provide a tool for improving arapaima aquaculture for commercial and conservation purposes.


Asunto(s)
Peces/genética , Peces/fisiología , Duplicación de Gen , Proteína 2 Inhibidora de la Diferenciación/genética , Proteína 2 Inhibidora de la Diferenciación/fisiología , Cromosomas Sexuales , Animales , Mapeo Cromosómico , Conservación de los Recursos Naturales , ADN/metabolismo , Evolución Molecular , Femenino , Explotaciones Pesqueras , Marcadores Genéticos/genética , Genotipo , Masculino , Fenotipo , Filogenia , Reacción en Cadena de la Polimerasa , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Cromosoma Y
13.
Nat Ecol Evol ; 4(6): 841-852, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32231327

RESUMEN

Sturgeons seem to be frozen in time. The archaic characteristics of this ancient fish lineage place it in a key phylogenetic position at the base of the ~30,000 modern teleost fish species. Moreover, sturgeons are notoriously polyploid, providing unique opportunities to investigate the evolution of polyploid genomes. We assembled a high-quality chromosome-level reference genome for the sterlet, Acipenser ruthenus. Our analysis revealed a very low protein evolution rate that is at least as slow as in other deep branches of the vertebrate tree, such as that of the coelacanth. We uncovered a whole-genome duplication that occurred in the Jurassic, early in the evolution of the entire sturgeon lineage. Following this polyploidization, the rediploidization of the genome included the loss of whole chromosomes in a segmental deduplication process. While known adaptive processes helped conserve a high degree of structural and functional tetraploidy over more than 180 million years, the reduction of redundancy of the polyploid genome seems to have been remarkably random.


Asunto(s)
Peces/genética , Genoma , Animales , Cromosomas , Filogenia , Poliploidía
15.
Dev Cell ; 29(4): 468-81, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24835465

RESUMEN

The faithful execution of embryogenesis relies on the ability of organisms to respond to genotoxic stress and to eliminate defective cells that could otherwise compromise viability. In syncytial-stage Drosophila embryos, nuclei with excessive DNA damage undergo programmed elimination through an as-yet poorly understood process of nuclear fallout at the midblastula transition. We show that this involves a Chk2-dependent mechanism of mRNA nuclear retention that is induced by DNA damage and prevents the translation of specific zygotic mRNAs encoding key mitotic, cytoskeletal, and nuclear proteins required to maintain nuclear viability. For histone messages, we show that nuclear retention involves Chk2-mediated inactivation of the Drosophila stem loop binding protein (SLBP), the levels of which are specifically depleted in damaged nuclei following Chk2 phosphorylation, an event that contributes to nuclear fallout. These results reveal a layer of regulation within the DNA damage surveillance systems that safeguard genome integrity in eukaryotes.


Asunto(s)
Núcleo Celular/genética , Quinasa de Punto de Control 2/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Proteínas de Unión al ARN/metabolismo , Animales , Animales Modificados Genéticamente , Blástula/citología , Quinasa de Punto de Control 2/genética , Daño del ADN , Reparación del ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrión no Mamífero , Histonas/genética , Fosforilación , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
16.
Wiley Interdiscip Rev Dev Biol ; 2(6): 781-96, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24123937

RESUMEN

The regulated intracellular trafficking and localized translation of mRNA molecules represents an important and prevalent mechanism of gene regulation. This process plays a key role in modulating asymmetric protein distribution linked to a wide variety of biological processes in different organisms and cell types. In this review, we begin by discussing the diverse biological functions, advantages, and mechanisms of mRNA localization that have been characterized to date. We then review recent technological innovations in RNA imaging and functional genomics methods that will undoubtedly provide powerful new strategies for the elucidation of mRNA trafficking pathways. Finally, we discuss several examples linking human disease pathogenesis to defects in transcript localization, which further underlines the critical importance of this gene regulatory mechanism.


Asunto(s)
Regulación de la Expresión Génica , Enfermedades Musculares/genética , Enfermedades Neurodegenerativas/genética , ARN Mensajero/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Humanos , Hibridación in Situ , Imagen Molecular , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Biosíntesis de Proteínas , Transporte de ARN , ARN Mensajero/metabolismo , ARN Mensajero/ultraestructura , Coloración y Etiquetado , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
17.
J Vis Exp ; (71): e50057, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23407302

RESUMEN

Assessing the expression pattern of a gene, as well as the subcellular localization properties of its transcribed RNA, are key features for understanding its biological function during development. RNA in situ hybridization (RNA-ISH) is a powerful method used for visualizing RNA distribution properties, be it at the organismal, cellular or subcellular levels. RNA-ISH is based on the hybridization of a labeled nucleic acid probe (e.g. antisense RNA, oligonucleotides) complementary to the sequence of an mRNA or a non-coding RNA target of interest. As the procedure requires primary sequence information alone to generate sequence-specific probes, it can be universally applied to a broad range of organisms and tissue specimens. Indeed, a number of large-scale ISH studies have been implemented to document gene expression and RNA localization dynamics in various model organisms, which has led to the establishment of important community resources. While a variety of probe labeling and detection strategies have been developed over the years, the combined usage of fluorescently-labeled detection reagents and enzymatic signal amplification steps offer significant enhancements in the sensitivity and resolution of the procedure. Here, we describe an optimized fluorescent in situ hybridization method (FISH) employing tyramide signal amplification (TSA) to visualize RNA expression and localization dynamics in staged Drosophila embryos. The procedure is carried out in 96-well PCR plate format, which greatly facilitates the simultaneous processing of large numbers of samples.


Asunto(s)
Drosophila/genética , Hibridación Fluorescente in Situ/métodos , ARN/análisis , Animales , Drosophila/química , Drosophila/embriología , ARN/biosíntesis , ARN/genética
18.
Development ; 135(24): 3983-7, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18987027

RESUMEN

Although the boundary elements of the Drosophila Bithorax complex (BX-C) have properties similar to chromatin insulators, genetic substitution experiments have demonstrated that these elements do more than simply insulate adjacent cis-regulatory domains. Many BX-C boundaries lie between enhancers and their target promoter, and must modulate their activity to allow distal enhancers to communicate with their target promoter. Given this complex function, it is surprising that the numerous BX-C boundaries share little sequence identity. To determine the extent of the similarity between these elements, we tested whether different BX-C boundary elements can functionally substitute for one another. Using gene conversion, we exchanged the Fab-7 and Fab-8 boundaries within the BX-C. Although the Fab-8 boundary can only partially substitute for the Fab-7 boundary, we find that the Fab-7 boundary can almost completely replace the Fab-8 boundary. Our results suggest that although boundary elements are not completely interchangeable, there is a commonality to the mechanism by which boundaries function. This commonality allows different DNA-binding proteins to create functional boundaries.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/genética , Genes Homeobox , Genes de Insecto , Proteínas de Homeodominio/genética , Animales , Secuencia de Bases , Tipificación del Cuerpo/genética , Cartilla de ADN/genética , Elementos de Facilitación Genéticos , Femenino , Conversión Génica , Prueba de Complementación Genética , Masculino , Familia de Multigenes , Regiones Promotoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA