Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 185: 1-12, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37839656

RESUMEN

We recently described a subgroup of autopsied COVID-19 subjects (∼40%), termed 'profibrotic phenotype,' who exhibited clusters of myofibroblasts (Mfbs), which were positive for the collagen-specific chaperone heat shock protein 47 (HSP47+) in situ. This report identifies increased, localized (hot spot restricted) expression of αSMA, COLα1, POSTN and FAP supporting the identity of HSP47+ cells as myofibroblasts and characterizing a profibrotic extracellular matrix (ECM) phenotype. Coupled with increased GRP78 in COVID-19 subjects, these data could reflect induction of the unfolded protein response for mitigation of proteostasis (i.e., protein homeostasis) dysfunction in discrete clusters of cells. ECM shifts in selected COVID-19 subjects occur without significant increases in either global trichrome positive staining or myocardial injury based quantitively on standard H&E scoring. Our findings also suggest distinct mechanism(s) for ECM remodeling in the setting of SARS-CoV-2 infection. The ratio of CD163+/CD68+ cells is increased in hot spots of profibrotic hearts compared with either controls or outside of hot spots in COVID-19 subjects. In sum, matrix remodeling of human COVID-19 hearts in situ is characterized by site-restricted profibrotic mediated (e.g., HSP47+ Mfbs, CD163+ Mφs) modifications in ECM (i.e., COLα1, POSTN, FAP), with a strong correlation between COLα1 and HSP47+cells within hot spots. Given the established associations of viral infection (e.g., human immunodeficiency virus; HIV), myocardial fibrosis and sudden cardiac death, early screening tools (e.g., plasma biomarkers, noninvasive cardiac magnetic resonance imaging) for diagnosis, monitoring and treatment of fibrotic ECM remodeling are warranted for COVID-19 high-risk populations.


Asunto(s)
COVID-19 , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , COVID-19/patología , SARS-CoV-2 , Corazón , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Fibrosis
2.
Radiographics ; 41(4): E126-E137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34143712

RESUMEN

The number of implanted devices such as orthopedic hardware and cardiac implantable devices continues to increase with an increase in the age of the patient population, as well as an increase in the number of indications for specific devices. Many patients with these devices have or will develop clinical conditions that are best depicted at MRI. However, implanted devices containing paramagnetic or ferromagnetic substances can cause significant artifact, which could limit the diagnostic capability of this modality. Performing imaging with MRI when an implant is present may be challenging, and there are numerous techniques the radiologist and technologist can use to help minimize artifacts related to implants. First, knowledge of the presence of an implant before patient arrival is critical to ensure safety of the patient when the device is subjected to a strong magnetic field. Once safety is ensured, the examination should be performed with the MRI system that is expected to provide the best image quality. The selection of the MRI system includes multiple considerations such as the effects of field strength and availability of specific sequences, which can reduce metal artifact. Appropriate patient positioning, attention to MRI parameters (including bandwidth, voxel size, and echo), and appropriate selection of sequences (those with less metal artifact and advanced metal reduction sequences) are critical to improve image quality. Patients with implants can be successfully imaged with MRI with appropriate planning and understanding of how to minimize artifacts. This improves image quality and the diagnostic confidence of the radiologist. ©RSNA, 2021.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Prótesis e Implantes , Humanos , Metales
4.
AJR Am J Roentgenol ; 214(3): 546-556, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31967503

RESUMEN

OBJECTIVE. A spectrum of pathophysiologic mechanisms can lead to the development of myocardial disorders including ischemia, genetic abnormalities, and systemic disorders. Cardiac MRI identifies different myocardial disorders, provides prognostic information, and directs therapy. In comparison with other imaging modalities, cardiac MRI has the advantage of allowing both functional assessment and tissues characterization in a single examination without the use of ionizing radiation. Newer cardiac MRI techniques including mapping can provide additional information about myocardial disease that may not be detected using conventional techniques. Emerging techniques including MR spectroscopy and finger printing will likely change the way we understand the pathophysiology mechanisms of the wide array of myocardial disorders. CONCLUSION. Imaging of myocardial disorders encompasses a large variety of conditions including both ischemic and nonischemic diseases. Cardiac MRI sequences, such as balanced steady-state free precession and late gadolinium enhancement, play a critical role in establishing diagnosis, determining prognosis, and guiding therapeutic management. Additional sequences-including perfusion imaging, T2*, real-time cine, and T2-weighted sequences-should be performed in specific clinical scenarios. There is emerging evidence for the use of mapping in imaging of myocardial disease. Multiple other new techniques are currently being studied. These novel techniques will likely change the way myocardial disorders are understood and diagnosed in the near future.


Asunto(s)
Cardiomiopatías/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cardiomiopatías/fisiopatología , Medios de Contraste , Humanos , Interpretación de Imagen Asistida por Computador , Espectroscopía de Resonancia Magnética , Pronóstico
5.
AJR Am J Roentgenol ; 215(2): 374-381, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32374663

RESUMEN

OBJECTIVE. Patients with cardiac implantable electronic devices (CIEDs) require cardiac MRI (CMRI) for a variety of reasons. The purpose of this study is to review and evaluate the value and safety of CMRI for patients with in situ CIEDs. CONCLUSION. Late gadolinium enhancement CMRI is the reference standard for assessing myocardial viability in patients with ventricular tachycardia before ablation of arrhythmogenic substrates. The use of late gadolinium enhancement CMRI for patients with CIEDs is safe as long as an imaging protocol is in place and precaution measures are taken.


Asunto(s)
Técnicas de Imagen Cardíaca , Medios de Contraste , Desfibriladores Implantables , Gadolinio , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/efectos adversos , Marcapaso Artificial , Taquicardia Ventricular/diagnóstico por imagen , Taquicardia Ventricular/cirugía , Anciano , Técnicas de Imagen Cardíaca/métodos , Femenino , Humanos
6.
AJR Am J Roentgenol ; 213(3): 555-561, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31120781

RESUMEN

OBJECTIVE. An important application of late gadolinium enhancement (LGE) cardiac MRI is accurate assessment of myocardial scar before ablation. However, this is often limited in patients with cardiac implantable electronic devices (CIEDs) because of metal device-induced artifacts. The purpose of this study was to determine whether a modified wideband inversion recovery (IR) LGE MRI technique decreases artifact volume to allow the assessment of myocardial scar. SUBJECTS AND METHODS. Fifty patients (17 women and 33 men; mean age ± SD, 61 ± 12 years; mean ejection fraction ± SD, 35.9% ± 13.3%) with CIEDs underwent cardiac MRI using conventional and modified wideband IR LGE techniques before ablation. The volume of device-induced artifact was quantified and stratified by tertiles on mild, moderate, and severe. Ordinal logistic regression analysis assessed the association between artifact volume on conventional and wideband images adjusted for patients' demographics. RESULTS. Conventional LGE MRI resulted in device-induced hyperintense artifacts that obscured ventricular segments in 32 of 50 (64%) cases. Wideband LGE MRI significantly reduced severe artifact volume (p < 0.0001) and completely resolved all mild and most moderate artifacts. Overall, wideband techniques resulted in a 56% reduction in total artifact volume for the cohort (p < 0.0001). The wideband LGE MRI sequence minimized artifacts in the most commonly obscured segments on the conventional LGE MRI sequence, with persistent artifacts in seven, eight, and four of 32 cases at the basal anterior, midventricular anterior, and midventricular anteroseptal segments, respectively. CONCLUSION. The modified wideband IR technique completely resolves mild and moderate device-induced hyperintense artifacts and significantly reduces the volume of severe artifact to allow accurate identification of myocardial scar in patients with CIEDs before ablation.


Asunto(s)
Artefactos , Cicatriz/diagnóstico por imagen , Desfibriladores Implantables , Imagen por Resonancia Magnética/métodos , Miocardio/patología , Marcapaso Artificial , Medios de Contraste , Femenino , Humanos , Masculino , Metales , Persona de Mediana Edad , Estudios Prospectivos
7.
Europace ; 19(5): 812-817, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27256419

RESUMEN

AIMS: Magnetic resonance imaging (MRI) has been reported to be safe in patients with cardiac implantable electronic devices (CIED) provided a specific protocol is followed. The objective of this study was to assess whether this is also true for patients excluded from published protocols. METHODS AND RESULTS: A total of 160 MRIs were obtained in 142 consecutive patients with CIEDs [106 patients had an implantable cardioverter defibrillator (ICD) and 36 had a pacemaker implanted] using an adapted, pre-specified protocol. A cardiac MRI was performed in 95 patients, and a spinal/brain MRI was performed in 47 patients. Forty-six patients (32%) had either abandoned leads (n = 10), and/or were pacemaker dependent with an implanted ICD (n = 19), had recently implanted CIEDs (n = 1), and/or had a CIED device with battery depletion (n = 2), and/or a component of the CIED was recalled or on advisory (n = 32). No major complications occurred. Some device parameters changed slightly, but significantly, right after or at 1-week post-MRI without requiring any reprogramming. In one patient with an ICD on advisory, the pacing rate changed inexplicably during one of his two MRIs from 90 to 50 b.p.m. CONCLUSION: Using a pre-specified protocol, cardiac and non-cardiac MRIs were performed in CIED patients with pacemaker dependency, abandoned leads, or depleted batteries without occurrence of major adverse events. Patients with devices on advisory need to be monitored carefully during MRI, especially if they are pacemaker dependent.


Asunto(s)
Quemaduras por Electricidad/etiología , Contraindicaciones , Desfibriladores Implantables/efectos adversos , Falla de Equipo/estadística & datos numéricos , Reacción a Cuerpo Extraño/etiología , Imagen por Resonancia Magnética/efectos adversos , Marcapaso Artificial/efectos adversos , Quemaduras por Electricidad/prevención & control , Femenino , Reacción a Cuerpo Extraño/prevención & control , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
J Magn Reson Imaging ; 44(6): 1448-1455, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27240936

RESUMEN

PURPOSE: To investigate the effect of the analysis technique on estimating hepatic iron content using MRI. MATERIALS AND METHODS: We evaluated the influences of single-exponential (EXP), bi-exponential (BEXP), and exponential-plus-constant (CEXP) models; and pixel-wise (MAP), average (AVG), and median (MED) signal calculation methods on T2* measurement using numerical simulations, calibrated phantoms, and nine patients scanned on 3 Tesla MRI, based on regression, correlation, and t-test statistical analysis. RESULTS: The T2* measurement error varied from 9 to 51% in the numerical simulations (T2*: 5-20 ms), depending on signal-to-noise ratio (SNR; range: 8-233) with significant (P < 0.05) difference between actual and predicted values. The MAP method performed well (error < 10%) at high SNR (>100), but resulted in severe estimation errors at low SNR (<50). The EXP model resulted in significant measurement differences (P < 0.05) compared with all other methods, irrespective of SNR. In vivo T2* values ranged from 3.1 to 53.6 ms, depending on the amount of iron overload and implemented analysis method. The BEXP (range: 3.7-50 ms) and CEXP (range: 3.8-53.6 ms) models, and the AVG (range: 3.2-38.8 ms) and MED (range: 3.1-38.5 ms) methods provided more accurate measurements than the EXP model (range: 3.1-18.3 ms) and MAP (range: 3.8-53.6 ms) method, respectively (P < 0.05). The BEXP and CEXP models provided very similar measurements (P > 0.87). Similarly, the AVG and MED methods provided very similar results (P > 0.97), with slightly better performance of the AVG method. CONCLUSION: Different analysis techniques show different performances based on the fitting model and signal calculation method. Based on this study, the CEXP model and AVG method are recommended due to simpler implementation and less influence by the selected analysis region. J. Magn. Reson. Imaging 2016;44:1448-1455.


Asunto(s)
Anemia de Células Falciformes/diagnóstico por imagen , Anemia de Células Falciformes/metabolismo , Interpretación de Imagen Asistida por Computador/métodos , Hierro/metabolismo , Hígado/diagnóstico por imagen , Hígado/metabolismo , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Femenino , Humanos , Masculino , Imagen Molecular/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
J Magn Reson Imaging ; 44(2): 463-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26788935

RESUMEN

PURPOSE: To assess the effects of cerebrospinal fluid (CSF) bidirectional motion in Chiari malformation type I (CMI), we monitored CSF velocity amplitudes on phase contrast MRI (PC-MRI) in patients before and after surgery; and in healthy volunteers. MATERIALS AND METHODS: 10 pediatric volunteers and 10 CMI patients participated in this study. CMI patients underwent PC-MRI scans before and approximately 14 months following surgery. Two parameters-amplitude of mean velocity (AMV) and amplitude of peak velocity (APV) of CSF-were derived from the data. Measurements were made at the mid-portion of the cerebral aqueduct, and anterior and posterior compartments of the spinal canal at the craniovertebral junction (CVJ). RESULTS: AMV and APV within the cerebral aqueduct were greater in preoperative assessments of the CMI patients compared to normal volunteers. Statistical significance was noted when comparing aqueductal AMV between the preoperative values and normal controls (P = 0.03), and before and after surgery in the CMI patients (P = 0.02). Lower values of AMV (P = 0.02) were noted in the anterior CVJ compartment in the patients before and after surgery when compared to the normal volunteers. There were no significant correlations (P = 0.06) noted for the APV at the CVJ between the normal control and patients, before or after surgery. CONCLUSION: In pediatric CMI patients, AMV for CSF within the cerebral aqueduct and anterior CVJ subarachnoid space are significantly elevated preoperatively and normalize following surgery. Given the biphasic CSF motion, measuring amplitude accounts for cranial and caudal flow. It may offer an alternative parameter to assess postsurgical outcome. J. Magn. Reson. Imaging 2016;44:463-470.


Asunto(s)
Malformación de Arnold-Chiari/diagnóstico por imagen , Malformación de Arnold-Chiari/cirugía , Acueducto del Mesencéfalo/diagnóstico por imagen , Líquido Cefalorraquídeo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Malformación de Arnold-Chiari/líquido cefalorraquídeo , Acueducto del Mesencéfalo/patología , Líquido Cefalorraquídeo/citología , Descompresión Quirúrgica , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Reología/métodos , Sensibilidad y Especificidad , Resultado del Tratamiento
12.
Acta Radiol ; 57(12): 1453-1459, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26861202

RESUMEN

Background Recently, magnetic resonance imaging (MRI) has been established as an effective technique for evaluating iron overload by measuring T2* in the liver. Purpose To investigate the effects of various factors associated with T2* calculation on the resulting measurement and to determine the analysis criterion that provides the most accurate T2* measurements. Material and Methods Both phantom and in vivo MRI experiments were conducted to study the effects of the selected region of interest (ROI) location and size, signal-averaging method, exponential-fitting model, echo truncation, iron-overload severity, and inter-/intra-observer variabilities on T2* measurements. The results were compared to reference values from the scanner processing software. Results The pixel-by-pixel calculation method provided results in better agreement with the reference values from the MRI scanner than the average or median methods. The choice of the exponential fitting model affected the results, depending on signal-to-noise ratio, number of echoes, minimum and maximum echo times, and tissue composition inside the selected ROI. The single-exponential model resulted in smaller error than the bi-exponential or exponential-plus-constant models, where the latter two models showed similar results. The relative performance of the different models and methods was not affected by the degree of iron-overload. Conclusion Various factors associated with the adopted T2* calculation method affect the resulting measurement. In this study, the pixel-by-pixel calculation method and single-exponential model provided the most accurate results based on the conducted phantom and in vivo MRI experiments.


Asunto(s)
Sobrecarga de Hierro/diagnóstico por imagen , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adulto , Femenino , Humanos , Masculino , Variaciones Dependientes del Observador , Fantasmas de Imagen , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Relación Señal-Ruido
13.
J Cardiovasc Magn Reson ; 17: 39, 2015 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-26004027

RESUMEN

BACKGROUND: Open cardiovascular magnetic resonance (CMR) scanners offer the potential for imaging patients with claustrophobia or large body size, but at a lower 1.0 Tesla magnetic field. This study aimed to evaluate the efficacy of open CMR for evaluation of pediatric and congenital heart disease. METHODS: This retrospective, cross-sectional study included all patients ≤18 years old or with congenital heart disease who underwent CMR on an open 1.0 Tesla scanner at two centers from 2012-2014. Indications for CMR and clinical questions were extracted from the medical record. Studies were qualitatively graded for image quality and diagnostic utility. In a subset of 25 patients, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were compared to size- and diagnosis-matched patients with CMR on a 1.5 Tesla scanner. RESULTS: A total of 65 patients (median 17.3 years old, 60% male) were included. Congenital heart disease was present in 32 (50%), with tetralogy of Fallot and bicuspid aortic valve the most common diagnoses. Open CMR was used due to scheduling/equipment issues in 51 (80%), claustrophobia in 7 (11%), and patient size in 3 (5%); 4 patients with claustrophobia had failed CMR on a different scanner, but completed the study on open CMR without sedation. All patients had good or excellent image quality on black blood, phase contrast, magnetic resonance angiography, and late gadolinium enhancement imaging. There was below average image quality in 3/63 (5%) patients with cine images, and 4/15 (27%) patients with coronary artery imaging. SNR and CNR were decreased in cine and magnetic resonance angiography images compared to 1.5 Tesla. The clinical question was answered adequately in all but 2 patients; 1 patient with a Fontan had artifact from an embolization coil limiting RV volume analysis, and in 1 patient the right coronary artery origin was not well seen. CONCLUSIONS: Open 1.0 Tesla scanners can effectively evaluate pediatric and congenital heart disease, including patients with claustrophobia and larger body size. Despite minor artifacts and differences in SNR and CNR, the majority of clinical questions can be answered adequately, with some limitations with coronary artery imaging. Further evaluation is necessary to optimize protocols and image quality.


Asunto(s)
Vasos Coronarios/patología , Cardiopatías Congénitas/patología , Angiografía por Resonancia Magnética/instrumentación , Imagen por Resonancia Cinemagnética/instrumentación , Miocardio/patología , Adolescente , Adulto , Factores de Edad , Artefactos , Tamaño Corporal , Niño , Preescolar , Estudios Transversales , Diseño de Equipo , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Angiografía por Resonancia Magnética/efectos adversos , Imagen por Resonancia Cinemagnética/efectos adversos , Masculino , Michigan , Persona de Mediana Edad , New York , Variaciones Dependientes del Observador , Trastornos Fóbicos/etiología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Relación Señal-Ruido , Adulto Joven
14.
Abdom Imaging ; 40(8): 3161-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26318750

RESUMEN

PURPOSE: Dual-energy computed tomography (DECT) has shown the capability of differentiating uric acid (UA) from non-UA stones with 90-100% accuracy. With the invention of dual-source (DS) scanners, both low- and high-energy images are acquired simultaneously. However, DECT can also be performed by sequential acquisition of both images on single-source (SS) scanners. The objective of this study is to investigate the effects of motion artifacts on stone classification using both SS-DECT and DS-DECT. METHODS: 114 kidney stones of different types and sizes were imaged on both DS-DECT and SS-DECT scanners with tube voltages of 80 and 140 kVp with and without induced motion. Postprocessing was conducted to create material-specific images from corresponding low- and high-energy images. The dual-energy ratio (DER) and stone material were determined and compared among different scans. RESULTS: For the motionless scans, all stones were correctly classified with SS-DECT, while two cystine stones were misclassified with DS-DECT. When motion was induced, 94% of the stones were misclassified with SS-DECT versus 11% with DS-DECT (P < 0.0001). Stone size was not a factor in stone misclassification under motion. Stone type was not a factor in stone misclassification under motion with SS-DECT, although with DS-DECT, cystine showed higher number of stone misclassification. CONCLUSIONS: Motion artifacts could result in stone misclassification in DECT. This effect is more pronounced in SS-DECT versus DS-DECT, especially if stones of different types lie in close proximity to each other. Further, possible misinterpretation of the number of stones (i.e., missing one, or thinking that there are two) in DS-DECT could be a potentially significant problem.


Asunto(s)
Artefactos , Cálculos Renales/diagnóstico por imagen , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos , Humanos , Movimiento (Física) , Fantasmas de Imagen , Reproducibilidad de los Resultados , Tomógrafos Computarizados por Rayos X
15.
Tomography ; 10(3): 331-348, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38535768

RESUMEN

Myocardial involvement was shown to be associated with an unfavorable prognosis in patients with COVID-19, which could lead to fatal outcomes as in myocardial injury-induced arrhythmias and sudden cardiac death. We hypothesized that magnetic resonance imaging (MRI) myocardial strain parameters are sensitive markers for identifying subclinical cardiac dysfunction associated with myocardial involvement in the post-acute sequelae of COVID-19 (PASC). This study evaluated 115 subjects, including 65 consecutive COVID-19 patients, using MRI for the assessment of either post-COVID-19 myocarditis or other cardiomyopathies. Subjects were categorized, based on the results of the MRI exams, as having either 'suspected' or 'excluded' myocarditis. A control group of 50 matched individuals was studied. Along with parameters of global cardiac function, the MRI images were analyzed for measurements of the myocardial T1, T2, extracellular volume (ECV), strain, and strain rate. Based on the MRI late gadolinium enhancement and T1/T2/ECV mappings, myocarditis was suspected in 7 out of 22 patients referred due to concern of myocarditis and in 9 out of 43 patients referred due to concern of cardiomyopathies. The myocardial global longitudinal, circumferential, and radial strains and strain rates in the suspected myocarditis group were significantly smaller than those in the excluded myocarditis group, which in turn were significantly smaller than those in the control group. The results showed significant correlations between the strain, strain rate, and global cardiac function parameters. In conclusion, this study emphasizes the value of multiparametric MRI for differentiating patients with myocardial involvement in the PASC based on changes in the myocardial contractility pattern and tissue structure.


Asunto(s)
COVID-19 , Imágenes de Resonancia Magnética Multiparamétrica , Miocarditis , Humanos , Síndrome Post Agudo de COVID-19 , Medios de Contraste , Gadolinio , Progresión de la Enfermedad
16.
Mol Imaging Biol ; 26(1): 124-137, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37530966

RESUMEN

PURPOSE: Vascular endothelium plays a central role in the pathogenesis of acute and chronic radiation injuries, yet the mechanisms which promote sustained endothelial dysfunction and contribute to late responding organ failure are unclear. We employed 2nd window (> 1100 nm emission) Near-Infrared (NIR) imaging using indocyanine green (ICG) to track and define the role of the notch ligand Delta-like ligand 4 (Dll4) in mediating vascular injury in two late-responding radiosensitive organs: the lung and kidney. PROCEDURES: Consomic strains of female Salt Sensitive or SS (Dll4-high) and SS with 3rd chromosome inherited from Brown Norway, SS.BN3 (Dll4-low) rats at ages 11-12 weeks were used to demonstrate the impact of reduced Dll4 expression on long-term vascular integrity, renal function, and survival following high-dose 13 Gy partial body irradiation at 42- and 90 days post-radiation. 2nd window dynamic NIR fluorescence imaging with ICG was analyzed with physiology-based pharmacokinetic modeling and confirmed with assays of endothelial Dll4 expression to assess the role of endogenous Dll4 expression on radiation injury protection. RESULTS: We show that SS.BN3 (Dll4-low) rats are relatively protected from vascular permeability disruption compared to the SS (Dll4-high) strain. We further demonstrated that SS.BN3 (Dll4-low) rats have reduced radiation induced loss of CD31+ vascular endothelial cells, and increased Dll4 vascular expression is correlated with vascular dysfunction. CONCLUSIONS: Together, these data suggest Dll4 plays a key role in pathogenesis of radiation-induced vascular injury to the lung and kidney.


Asunto(s)
Proteínas de la Membrana , Traumatismos por Radiación , Lesiones del Sistema Vascular , Ratas , Femenino , Animales , Células Endoteliales/metabolismo , Lesiones del Sistema Vascular/diagnóstico por imagen , Lesiones del Sistema Vascular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
17.
Sci Rep ; 13(1): 8352, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221191

RESUMEN

Coarctation of the aorta (CoA) is one of the most common congenital cardiovascular diseases. CoA patients frequently undergo surgical repair, but hypertension (HTN) is still common. The current treatment guideline has revealed irreversible changes in structure and function, yet revised severity guidelines have not been proposed. Our objective was to quantify temporal alterations in mechanical stimuli and changes in arterial geometry in response to the range of CoA severities and durations (i.e. age of treatment) seen clinically. Rabbits were exposed to CoA resulting in peak-to-peak blood pressure gradient (BPGpp) severities of ≤ 10, 10-20, and ≥ 20 mmHg for a duration of ~ 1, 3, or 20 weeks using permanent, dissolvable, and rapidly dissolvable sutures. Elastic moduli and thickness were estimated from imaging and longitudinal fluid-structure interaction (FSI) simulations were conducted at different ages using geometries and boundary conditions from experimentally measured data. Mechanical stimuli were characterized including blood flow velocity patterns, wall tension, and radial strain. Experimental results show vascular alternations including thickening and stiffening proximal to the coarctation with increasing severity and/or duration of CoA. FSI simulations indicate wall tension in the proximal region increases markedly with coarctation severity. Importantly, even mild CoA induced stimuli for remodeling that exceeds values seen in adulthood if not treated early and using a BPGpp lower than the current clinical threshold. The findings are aligned with observations from other species and provide some guidance for the values of mechanical stimuli that could be used to predict the likelihood of HTN in human patients with CoA.


Asunto(s)
Coartación Aórtica , Hipertensión , Lagomorpha , Animales , Humanos , Conejos , Remodelación Vascular , Arterias , Velocidad del Flujo Sanguíneo
18.
Biomedicines ; 11(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37509457

RESUMEN

Background: Coarctation of the aorta (CoA; constriction of the proximal descending thoracic aorta) is among the most common congenital cardiovascular defects. Coarctation-induced mechanical perturbations trigger a cycle of mechano-transduction events leading to irreversible precursors of hypertension including arterial thickening, stiffening, and vasoactive dysfunction in proximal conduit arteries. This study sought to identify kinetics of the stress-mediated compensatory response leading to these alterations using a preclinical rabbit model of CoA. Methods: A prior growth and remodeling (G&R) framework was reformulated and fit to empirical measurements from CoA rabbits classified into one control and nine CoA groups of various severities and durations (n = 63, 5-11/group). Empirical measurements included Doppler ultrasound imaging, uniaxial extension testing, catheter-based blood pressure, and wire myography, yielding the time evolution of arterial thickening, stiffening, and vasoactive dysfunction required to fit G&R constitutive parameters. Results: Excellent agreement was observed between model predictions and observed patterns of arterial thickening, stiffening, and dysfunction among all CoA groups. For example, predicted vascular impairment was not significantly different from empirical observations via wire myography (p-value > 0.13). Specifically, 48% and 45% impairment was observed in smooth muscle contraction and endothelial-dependent relaxation, respectively, which were accurately predicted using the G&R model. Conclusions: The resulting G&R model, for the first time, allows for prediction of hypertension precursors at neonatal ages that is currently challenging to examine in preclinical models. These findings provide a validated computational tool for prediction of persistent arterial dysfunction and identification of revised severity-duration thresholds that may ultimately avoid hypertension from CoA.

19.
Curr Med Imaging ; 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37691207

RESUMEN

BACKGROUND: Tetralogy of Fallot (ToF) is the most common form of cyanotic congenital heart disease, where right ventricular (RV) function is an important determinant of subsequent intervention. OBJECTIVE: In this study, we evaluate the feasibility of fast strain-encoding (fastSENC; a one-heartbeat sequence) magnetic resonance imaging (MRI) for assessing regional cardiac function in ToF. METHOD: FastSENC was implemented to characterize regional circumferential (Ecc) and longitudinal (Ell) strains in the left ventricle (LV) and RV in post-repair ToF. Data analysis was conducted to compare strain measurements in the RV to those in the LV, as well as to those generated by the MRI Tissue-Tracking (MRI-TT) technique, and to assess the relationship between strain and ejection fraction (EF). RESULTS: Despite normal LVEF (55±8.5%), RVEF was borderline (46±6.4%), but significantly lower than LVEF. RV strains (RV-Ell=-20.2±2.9%, RV-Ecc=-15.7±6.4%) were less than LV strains (LV-Ell=-21.7±3.7%, LV-Ecc=-18.3±4.7%), and Ell was the dominant strain component. Strain differences between fastSENC and MRI-TT were less significant in RV than in LV. There existed moderate and weak correlations for RV-Ecc and RV-Ell, respectively, against RVEF. Compared to LV strain, RV strain showed regional heterogeneity with a trend for reduced strain from the inferior to anterior regions. Inter-ventricular strain delay was larger for Ell (64±47ms) compared to Ecc (36±40ms), reflecting a trend for contraction dyssynchrony. CONCLUSION: FastSENC allows for characterizing subclinical regional RV dysfunction in ToF. Due to its sensitivity for evaluating regional myocardial contractility patterns and real-time imaging capability without the need for breath-holding, fastSENC makes it more suitable for evaluating RV function in ToF.

20.
J Am Heart Assoc ; 12(4): e027990, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36789856

RESUMEN

Background Cardiac fibrosis complicates SARS-CoV-2 infections and has been linked to arrhythmic complications in survivors. Accordingly, we sought evidence of increased HSP47 (heat shock protein 47), a stress-inducible chaperone protein that regulates biosynthesis and secretion of procollagen in heart tissue, with the goal of elucidating molecular mechanisms underlying cardiac fibrosis in subjects with this viral infection. Methods and Results Using human autopsy tissue, immunofluorescence, and immunohistochemistry, we quantified Hsp47+ cells and collagen α 1(l) in hearts from people with SARS-CoV-2 infections. Because macrophages are also linked to inflammation, we measured CD163+ cells in the same tissues. We observed irregular groups of spindle-shaped HSP47+ and CD163+ cells as well as increased collagen α 1(I) deposition, each proximate to one another in "hot spots" of ≈40% of hearts after SARS-CoV-2 infection (HSP47+ P<0.05 versus nonfibrotics and P<0.001 versus controls). Because HSP47+ cells are consistent with myofibroblasts, subjects with hot spots are termed "profibrotic." The remaining 60% of subjects dying with COVID-19 without hot spots are referred to as "nonfibrotic." No control subject exhibited hot spots. Conclusions Colocalization of myofibroblasts, M2(CD163+) macrophages, and collagen α 1(l) may be the first evidence of a COVID-19-related "profibrotic phenotype" in human hearts in situ. The potential public health and diagnostic implications of these observations require follow-up to further define mechanisms of viral-mediated cardiac fibrosis.


Asunto(s)
COVID-19 , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , SARS-CoV-2 , Colágeno/metabolismo , Proteínas de Choque Térmico/metabolismo , Colágeno Tipo I/metabolismo , Fenotipo , Macrófagos/metabolismo , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA