Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JBMR Plus ; 8(5): ziae021, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38562914

RESUMEN

Targeting the gut-bone axis with probiotics and prebiotics is considered as a promising strategy to reduce the risk of osteoporosis. Gut-derived short chain fatty acids (SCFA) mediate the effects of probiotics on bone via Tregs, but it is not known whether prebiotics act through a similar mechanism. We investigated how 2 different prebiotics, tart cherry (TC) and fructooligosaccharide (FOS), affect bone, and whether Tregs are required for this response. Eight-wk-old C57BL/6 female mice were fed with diets supplemented with 10% w/w TC, FOS, or a control diet (Con; AIN-93M) diet, and they received an isotype control or CD25 Ab to suppress Tregs. The FOS diet increased BMC, density, and trabecular bone volume in the vertebra (~40%) and proximal tibia (~30%) compared to the TC and control diets (Con), irrespective of CD25 treatment. Both prebiotics increased (P < .01) fecal SCFAs, but the response was greater with FOS. To determine how FOS affected bone cells, we examined genes involved in osteoblast and osteoclast differentiation and activity as well as genes expressed by osteocytes. The FOS increased the expression of regulators of osteoblast differentiation (bone morphogenetic protein 2 [Bmp2], Wnt family member 10b [Wnt10b] and Osterix [Osx]) and type 1 collagen). Osteoclasts regulators were unaltered. The FOS also increased the expression of genes associated with osteocytes, including (Phex), matrix extracellular phosphoglycoprotein (Mepe), and dentin matrix acidic phosphoprotein 1 (Dmp-1). However, Sost, the gene that encodes for sclerostin was also increased by FOS as the number and density of osteocytes increased. These findings demonstrate that FOS has a greater effect on the bone mass and structure in young adult female mice than TC and that its influence on osteoblasts and osteocytes is not dependent on Tregs.

2.
bioRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38948768

RESUMEN

Objectives: Sjögren's disease (SjD) is a common exocrine disorder typified by chronic inflammation and dryness, but also profound fatigue, suggesting a pathological basis in cellular bioenergetics. In healthy states, damaged or dysfunctional mitochondrial components are broken down and recycled by mitophagy, a specialized form of autophagy. In many autoimmune disorders, however, evidence suggests that dysfunctional mitophagy allows poorly functioning mitochondria to persist and contribute to a cellular milieu with elevated reactive oxygen species. We hypothesized that mitophagic processes are dysregulated in SjD and that dysfunctional mitochondria contribute to overall fatigue. We sought to link fatigue with mitochondrial dysfunction directly in SjD, heretofore unexamined, and further sought to assess the pathogenic extent and implications of dysregulated mitophagy in SjD. Methods: We isolated pan T cells via negative selection from the peripheral blood mononuclear cells of 17 SjD and 8 age-matched healthy subjects, all of whom completed fatigue questionnaires prior to phlebotomy. Isolated T cells were analyzed for mitochondrial oxygen consumption rate (OCR) and glycolysis using Seahorse, and linear correlations with fatigue measures were assessed. A mitophagy transcriptional signature in SjD was identified by reanalysis of whole-blood microarray data from 190 SjD and 32 healthy subjects. Differential expression analyses were performed by case/control and subgroup analyses comparing SjD patients by mitophagy transcriptional cluster against healthy subjects followed by bioinformatic interpretation using gene set enrichment analysis. Results: Basal OCR, ATP-linked respiration, maximal respiration, and reserve capacity were significantly lower in SjD compared to healthy subjects with no observed differences in non-mitochondrial respiration, basal glycolysis, or glycolytic stress. SjD lymphocytic mitochondria show structural alterations compared to healthy subjects. Fatigue scores related to pain/discomfort in SjD correlated with the altered OCR. Results from subgroup analyses by mitophagic SjD clusters revealed highly variable inter-cluster differentially expressed genes (DEGs) and expanded the number of SjD-associated gene targets by tenfold within the same dataset. Conclusion: Mitochondrial dysfunction, associated with fatigue, is a significant problem in SjD and warrants further investigation.

3.
Nutr Res ; 127: 13-26, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820937

RESUMEN

Wheat germ (WG), a by-product of flour milling, is rich in bioactive substances that may help improve health complications associated with increased adiposity. This study investigated the effects of WG on gut health, metabolic, and inflammatory markers in adults classified as overweight. We hypothesized that WG, because of its many bioactive components, would improve gut health and metabolic, and inflammatory markers in overweight adults. Forty adults (18-45 years old) and with a body mass index between 25 and 30 kg/m2 participated in this single-blinded randomized controlled pilot study. Participants consumed the study supplements containing 30 g of either cornmeal (control, CL) or WG daily for 4 weeks. Primary outcome variables were gut health markers including gut microbiota, gut integrity markers, and fecal short-chain fatty acids, whereas secondary outcome variables included metabolic and inflammatory parameters assessed at baseline and at the end of supplementation. Thirty-nine participants (n = 19 and 20 for CL and WG group, respectively) completed the study. The genus Faecalibacterium was significantly higher in the WG group compared to CL post-supplementation but no significant changes in other gut health markers, short-chain fatty acids, inflammatory markers, and lipid profiles were observed. Compared with baseline, WG improved markers of glucose homeostasis including insulin (P = .02), homeostatic model assessment of insulin resistance (P = .03), glycated hemoglobin (P = .07), and the pro-inflammatory adipokine, resistin (P = .04). However, these parameters after intervention were not different with control. Our findings suggest that WG supplementation have modest effects on gut health but may provide an economical option for individuals to improve glycemic control.


Asunto(s)
Biomarcadores , Glucemia , Suplementos Dietéticos , Microbioma Gastrointestinal , Homeostasis , Sobrepeso , Triticum , Humanos , Adulto , Proyectos Piloto , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Adulto Joven , Glucemia/metabolismo , Método Simple Ciego , Adolescente , Heces/microbiología , Heces/química , Ácidos Grasos Volátiles , Índice de Masa Corporal , Resistencia a la Insulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA