RESUMEN
The semimembranosus muscle inserts into several tendons that are associated with some pathologies. Although ultrasound is useful for studying, diagnosing, and managing these pathologies, the correct interpretation of any images requires a clear knowledge of the related anatomical structures and the inter-related functions. We studied 38 cryopreserved non-paired knees from adult anatomical specimens and 4 non-paired knees from 29 to 38-week-old fetuses. The semimembranosus muscle and its tendons were located, observed, and injected under ultrasound guidance. The macroscopic anatomy was studied using dissection and anatomical cuts and the tendons were analyzed histologically. Measurements of muscle were taken 10 cm from the medial epicondyle and just before the tendon divided. The ultrasound facilitated the identification of the different divisions of the tendon of semimembranosus muscle and the rotation of the muscle and tendon from medial to posterior. An anatomical study confirmed this rotation and revealed an average width, thickness, and diameter of 38.29 mm, 14.36 mm, and 112.64 mm, respectively. Important relationships were observed between the divisions of the main tendons and the medial collateral ligament, the posterior side of the knee and popliteus muscle. This information can help to explain knee pathologies and facilitate rehabilitation after surgery.
RESUMEN
BACKGROUND: Injuries of the proximal attachment of the hamstring muscles are common. The present study aimed to investigate the relationship of the proximal attachment of the hamstring muscles with neighboring structures comprehensively. METHODS: A total of 97 hemipelvis from 66 cryopreserved specimens were evaluated via ultrasound, anatomical and histological samples. RESULTS: The proximal attachment of the hamstring muscles presents a hyperechogenic line surrounding the origin of the semimembranosus and the long head of the biceps femoris muscles, as well as another hyperechogenic line covering the sciatic nerve. The anatomical and histological study confirms the ultrasound results and shows different layers forming the sacrotuberous ligament. Furthermore, it shows that the proximal attachment of the semimembranosus muscle has a more proximal origin than the rest of the hamstring muscles. Moreover, this muscle shares fibers with the long head of the biceps femoris muscle and expands to the adductor magnus muscle. The histological analysis also shows the dense connective tissue of the retinaculum covering the long head of the biceps femoris and semimembranosus muscles, as well as the expansion covering the sciatic nerve. CONCLUSIONS: These anatomical relationships could explain injuries at the origin of the hamstring muscles.