Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS Biol ; 20(8): e3001714, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35913979

RESUMEN

Galanin is a neuropeptide expressed in the central and peripheral nervous systems, where it regulates various processes including neuroendocrine release, cognition, and nerve regeneration. Three G-protein coupled receptors (GPCRs) for galanin have been discovered, which is the focus of efforts to treat diseases including Alzheimer's disease, anxiety, and addiction. To understand the basis of the ligand preferences of the receptors and to assist structure-based drug design, we used cryo-electron microscopy (cryo-EM) to solve the molecular structure of GALR2 bound to galanin and a cognate heterotrimeric G-protein, providing a molecular view of the neuropeptide binding site. Mutant proteins were assayed to help reveal the basis of ligand specificity, and structural comparison between the activated GALR2 and inactive hß2AR was used to relate galanin binding to the movements of transmembrane (TM) helices and the G-protein interface.


Asunto(s)
Galanina/química , Proteínas de Unión al GTP Heterotriméricas , Receptor de Galanina Tipo 2/química , Microscopía por Crioelectrón , Galanina/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Ligandos , Receptor de Galanina Tipo 2/metabolismo
2.
Nat Chem Biol ; 18(3): 281-288, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34937912

RESUMEN

Sphingosine-1-phosphate receptor 1 (S1PR1) is a master regulator of lymphocyte egress from the lymph node and an established drug target for multiple sclerosis (MS). Mechanistically, therapeutic S1PR1 modulators activate the receptor yet induce sustained internalization through a potent association with ß-arrestin. However, a structural basis of biased agonism remains elusive. Here, we report the cryo-electron microscopy (cryo-EM) structures of Gi-bound S1PR1 in complex with S1P, fingolimod-phosphate (FTY720-P) and siponimod (BAF312). In combination with functional assays and molecular dynamics (MD) studies, we reveal that the ß-arrestin-biased ligands direct a distinct activation path in S1PR1 through the extensive interplay between the PIF and the NPxxY motifs. Specifically, the intermediate flipping of W2696.48 and the retained interaction between F2656.44 and N3077.49 are the key features of the ß-arrestin bias. We further identify ligand-receptor interactions accounting for the S1PR subtype specificity of BAF312. These structural insights provide a rational basis for designing novel signaling-biased S1PR modulators.


Asunto(s)
Clorhidrato de Fingolimod , Esclerosis Múltiple , Microscopía por Crioelectrón , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Receptores de Esfingosina-1-Fosfato , beta-Arrestinas
3.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33790007

RESUMEN

Schizorhodopsins (SzRs), a new rhodopsin family identified in Asgard archaea, are phylogenetically located at an intermediate position between type-1 microbial rhodopsins and heliorhodopsins. SzRs work as light-driven inward H+ pumps as xenorhodopsins in bacteria. Although E81 plays an essential role in inward H+ release, the H+ is not metastably trapped in such a putative H+ acceptor, unlike the other H+ pumps. It remains elusive why SzR exhibits different kinetic behaviors in H+ release. Here, we report the crystal structure of SzR AM_5_00977 at 2.1 Å resolution. The SzR structure superimposes well on that of bacteriorhodopsin rather than heliorhodopsin, suggesting that SzRs are classified with type-1 rhodopsins. The structure-based mutagenesis study demonstrated that the residues N100 and V103 around the ß-ionone ring are essential for color tuning in SzRs. The cytoplasmic parts of transmembrane helices 2, 6, and 7 are shorter than those in the other microbial rhodopsins, and thus E81 is located near the cytosol and easily exposed to the solvent by light-induced structural change. We propose a model of untrapped inward H+ release; H+ is released through the water-mediated transport network from the retinal Schiff base to the cytosol by the side of E81. Moreover, most residues on the H+ transport pathway are not conserved between SzRs and xenorhodopsins, suggesting that they have entirely different inward H+ release mechanisms.


Asunto(s)
Bombas de Protones/química , Rodopsinas Microbianas/química , Sitios de Unión , Escherichia coli , Conformación Proteica
4.
J Nat Prod ; 86(2): 398-405, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36762727

RESUMEN

By mining fungal genomic information, a noncanonical iterative type I PKS fused with an N-terminal adenylation-thiolation didomain, which catalyzes the formation of naringenin chalcone, was found. Structural prediction and molecular docking analysis indicated that a C-terminal thioesterase domain was involved in the Claisen-type cyclization. An enzyme responsible for formation of (2S)-flavanone in the biosynthesis of fungal flavonoids was also identified. Collectively, these findings demonstrate unprecedented fungal biosynthetic machinery leading to plant-like metabolites.


Asunto(s)
Aciltransferasas , Flavonoides , Simulación del Acoplamiento Molecular , Flavonoides/química
5.
Nature ; 534(7607): 417-20, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27281193

RESUMEN

The drug/metabolite transporter (DMT) superfamily is a large group of membrane transporters ubiquitously found in eukaryotes, bacteria and archaea, and includes exporters for a remarkably wide range of substrates, such as toxic compounds and metabolites. YddG is a bacterial DMT protein that expels aromatic amino acids and exogenous toxic compounds, thereby contributing to cellular homeostasis. Here we present structural and functional analyses of YddG. Using liposome-based analyses, we show that Escherichia coli and Starkeya novella YddG export various amino acids. The crystal structure of S. novella YddG at 2.4 Å resolution reveals a new membrane transporter topology, with ten transmembrane segments in an outward-facing state. The overall structure is basket-shaped, with a large substrate-binding cavity at the centre of the molecule, and is composed of inverted structural repeats related by two-fold pseudo-symmetry. On the basis of this intramolecular symmetry, we propose a structural model for the inward-facing state and a mechanism of the conformational change for substrate transport, which we confirmed by biochemical analyses. These findings provide a structural basis for the mechanism of transport of DMT superfamily proteins.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Alphaproteobacteria/química , Alphaproteobacteria/metabolismo , Transporte Biológico , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/metabolismo , Liposomas/química , Liposomas/metabolismo , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad
6.
J Biol Chem ; 294(10): 3432-3443, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30622140

RESUMEN

The choanoflagellate Salpingoeca rosetta contains a chimeric rhodopsin protein composed of an N-terminal rhodopsin (Rh) domain and a C-terminal cyclic nucleotide phosphodiesterase (PDE) domain. The Rh-PDE enzyme light-dependently decreases the concentrations of cyclic nucleotides such as cGMP and cAMP. Photoexcitation of purified full-length Rh-PDE yields an "M" intermediate with a deprotonated Schiff base, and its recovery is much faster than that of the enzyme domain. To gain structural and mechanistic insights into the Rh domain, here we expressed and purified the transmembrane domain of Rh-PDE, Rh-PDE(TMD), and analyzed it with transient absorption, light-induced difference UV-visible, and FTIR spectroscopy methods. These analyses revealed that the "K" intermediate forms within 0.005 ms and converts into the M intermediate with a time constant of 4 ms, with the latter returning to the original state within 4 s. FTIR spectroscopy revealed that all-trans to 13-cis photoisomerization occurs as the primary event during which chromophore distortion is located at the middle of the polyene chain, allowing the Schiff base to form a stronger hydrogen bond. We also noted that the peptide backbone of the α-helix becomes deformed upon M intermediate formation. Results from site-directed mutagenesis suggested that Glu-164 is protonated and that Asp-292 acts as the only Schiff base counterion in Rh-PDE. A strong reduction of enzymatic activity in a D292N variant, but not in an E164Q variant, indicated an important catalytic role of the negative charge at Asp-292. Our findings provide further mechanistic insights into rhodopsin-mediated, light-dependent regulation of second-messenger levels in eukaryotic microbes.


Asunto(s)
Membrana Celular/enzimología , Coanoflagelados/enzimología , Hidrolasas Diéster Fosfóricas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Mutación , Dominios Proteicos , Rodopsina/genética , Análisis Espectral
8.
Nano Lett ; 18(3): 1869-1874, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29424547

RESUMEN

Fluids confined in a nanoscale space behave differently than in the bulk due to strong interactions between fluid molecules and solid atoms. Here, we observed water confined inside "open" hydrophilized carbon nanotubes (CNT), with diameter of tens of nanometers, using transmission electron microscopy (TEM). A 1-7 nm water film adhering to most of the inner wall surface was observed and remained stable in the high vacuum (order of 10-5 Pa) of the TEM. The superstability of this film was attributed to a combination of curvature, nanoroughness, and confinement resulting in a lower vapor pressure for water and hence inhibiting its vaporization. Occasional, suspended ultrathin water film with thickness of 3-20 nm were found and remained stable inside the CNT. This film thickness is 1 order of magnitude smaller than the critical film thickness (about 40 nm) reported by the Derjaguin-Landau-Verwey-Overbeek theory and previous experimental investigations. The stability of the suspended ultrathin water film is attributed to the additional molecular interactions due to the extended water meniscus, which balances the rest of the disjoining pressures.

9.
Chemphyschem ; 17(10): 1500-4, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-26864857

RESUMEN

Highly stable nanoscale gas states at solid/liquid interfaces, referred to as nanobubbles, have been widely studied for over a decade. In this study, nanobubbles generated on a hydrophobic Teflon amorphous fluoroplastic thin film in the presence and absence of hydrophilic carbon domains are investigated by peak force quantitative nanomechanics. On the hydrophobic surface without hydrophilic domains, a small number of nanobubbles are generated and then rapidly decrease in size. On the hydrophobic surface with hydrophilic domains, the hydrophilic domains have a significant effect on the generation and stability of nanobubbles, with bubbles remaining on the surface for up to three days.

10.
Langmuir ; 31(3): 982-6, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25540821

RESUMEN

Nanobubbles exist at solid-liquid interfaces between pure water and hydrophobic surfaces with very high stability, lasting in certain cases up to several days. Not only semispherical but also other shapes, such as micropancakes, are known to exist at such interfaces. However, doubt has been raised as to whether or not the nanobubbles are gas-phase entities. In this study, surface nanobubbles at a pure water-highly ordered pyrolytic graphite (HOPG) interface were investigated by peak force quantitative nanomechanics (PF-QNM). Multiple isolated nanobubbles generated by the solvent-exchange method were present on the terraced areas, avoiding the steps of the HOPG surface. Adjacent nanobubbles coalesced and formed metastable nanobubbles. Coalescence was enhanced by the PF-QNM measurement. We determined that nanobubbles can exist for a long time because of nanoscale contact angle hysteresis at the water-HOPG interface. Moreover, the hydrophilic steps of HOPG were avoided during coalescence, providing evidence that the nanobubbles are truly gas phase.

11.
Langmuir ; 30(48): 14532-7, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25385673

RESUMEN

Water condensation on a hybrid hydrophilic-hydrophobic surface was investigated to reveal nucleation mechanisms at the microscale. Focused ion beam (FIB) irradiation was used to change the wettability of the hydrophobic surface with 10 nm order spatial resolution. Condensation experiments were conducted using environmental scanning electron microscopy; droplets, with a minimum diameter of 800 nm, lined up on the FIB-irradiated hydrophilic lines. The heterogeneous nucleation theory was extended to consider the water molecules attracted to the hydrophilic area, thereby enabling explanation of the nucleation mechanism under unsaturated conditions. Our results showed that the effective surface coverage of the water molecules on the hydrophilic region was 0.1-1.1 at 0.0 °C and 560 Pa and was dependent on the width of the FIB-irradiated hydrophilic lines and hydrophobic area. The droplet nucleation mechanism unveiled in this work would enable the design of new surfaces with enhanced dropwise condensation heat transfer.

12.
Sci Rep ; 14(1): 9453, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658606

RESUMEN

Arginine-vasopressin (AVP), a cyclic peptide hormone composed of nine amino acids, regulates water reabsorption by increasing intracellular cyclic adenosine monophosphate (cAMP) concentrations via the vasopressin V2 receptor (V2R). Plasma AVP is a valuable biomarker for the diagnosis of central diabetes insipidus (CDI) and is commonly measured using radioimmunoassay (RIA). However, RIA has several drawbacks, including a long hands-on time, complex procedures, and handling of radioisotopes with special equipment and facilities. In this study, we developed a bioassay to measure plasma AVP levels using HEK293 cells expressing an engineered V2R and a cAMP biosensor. To achieve high sensitivity, we screened V2R orthologs from 11 various mammalian species and found that the platypus V2R (pV2R) responded to AVP with approximately six-fold higher sensitivity than that observed by the human V2R. Furthermore, to reduce cross-reactivity with desmopressin (DDAVP), a V2R agonist used for CDI treatment, we introduced a previously described point mutation into pV2R, yielding an approximately 20-fold reduction of responsiveness to DDAVP while maintaining responsiveness to AVP. Finally, a comparison of plasma samples from 12 healthy individuals demonstrated a strong correlation (Pearson's correlation value: 0.90) between our bioassay and RIA. Overall, our assay offers a more rapid and convenient method for quantifying plasma AVP concentrations than existing techniques.


Asunto(s)
Arginina Vasopresina , Técnicas Biosensibles , AMP Cíclico , Receptores de Vasopresinas , Humanos , Arginina Vasopresina/sangre , Células HEK293 , AMP Cíclico/sangre , AMP Cíclico/metabolismo , Receptores de Vasopresinas/genética , Técnicas Biosensibles/métodos , Desamino Arginina Vasopresina/farmacología , Animales , Bioensayo/métodos
13.
Sci Rep ; 14(1): 11119, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750247

RESUMEN

G-protein-coupled receptors (GPCRs) transduce diverse signals into the cell by coupling to one or several Gα subtypes. Of the 16 Gα subtypes in human cells, Gα12 and Gα13 belong to the G12 subfamily and are reported to be functionally different. Notably, certain GPCRs display selective coupling to either Gα12 or Gα13, highlighting their significance in various cellular contexts. However, the structural basis underlying this selectivity remains unclear. Here, using a Gα12-coupled designer receptor exclusively activated by designer drugs (DREADD; G12D) as a model system, we identified residues in the α5 helix and the receptor that collaboratively determine Gα12-vs-Gα13 selectivity. Residue-swapping experiments showed that G12D distinguishes differences between Gα12 and Gα13 in the positions G.H5.09 and G.H5.23 in the α5 helix. Molecular dynamics simulations observed that I378G.H5.23 in Gα12 interacts with N1032.39, S1693.53 and Y17634.53 in G12D, while H364G.H5.09 in Gα12 interact with Q2645.71 in G12D. Screening of mutations at these positions in G12D identified G12D mutants that enhanced coupling with Gα12 and to an even greater extent with Gα13. Combined mutations, most notably the dual Y17634.53H and Q2645.71R mutant, further enhanced Gα12/13 coupling, thereby serving as a potential Gα12/13-DREADD. Such novel Gα12/13-DREADD may be useful in future efforts to develop drugs that target Gα12/13 signaling as well as to identify their therapeutic indications.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP G12-G13 , Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/química , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Células HEK293 , Drogas de Diseño/química , Drogas de Diseño/metabolismo , Unión Proteica
14.
PLoS One ; 19(5): e0303507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748623

RESUMEN

Loss-of-function mutations in the type 2 vasopressin receptor (V2R) are a major cause of congenital nephrogenic diabetes insipidus (cNDI). In the context of partial cNDI, the response to desmopressin (dDAVP) is partially, but not entirely, diminished. For those with the partial cNDI, restoration of V2R function would offer a prospective therapeutic approach. In this study, we revealed that OPC-51803 (OPC5) and its structurally related V2R agonists could functionally restore V2R mutants causing partial cNDI by inducing prolonged signal activation. The OPC5-related agonists exhibited functional selectivity by inducing signaling through the Gs-cAMP pathway while not recruiting ß-arrestin1/2. We found that six cNDI-related V2R partial mutants (V882.53M, Y1283.41S, L1614.47P, T2736.37M, S3298.47R and S3338.51del) displayed varying degrees of plasma membrane expression levels and exhibited moderately impaired signaling function. Several OPC5-related agonists induced higher cAMP responses than AVP at V2R mutants after prolonged agonist stimulation, suggesting their potential effectiveness in compensating impaired V2R-mediated function. Furthermore, docking analysis revealed that the differential interaction of agonists with L3127.40 caused altered coordination of TM7, potentially contributing to the functional selectivity of signaling. These findings suggest that nonpeptide V2R agonists could hold promise as potential drug candidates for addressing partial cNDI.


Asunto(s)
Diabetes Insípida Nefrogénica , Receptores de Vasopresinas , Animales , Humanos , beta-Arrestinas/metabolismo , AMP Cíclico/metabolismo , Desamino Arginina Vasopresina/farmacología , Diabetes Insípida Nefrogénica/tratamiento farmacológico , Diabetes Insípida Nefrogénica/genética , Diabetes Insípida Nefrogénica/metabolismo , Células HEK293 , Mutación , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/agonistas , Receptores de Vasopresinas/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Cell Chem Biol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39265572

RESUMEN

The lysophosphatidylserine (LysoPS) receptor P2Y10, also known as LPS2, plays crucial roles in the regulation of immune responses and holds promise for the treatment of autoimmune diseases. Here, we report the cryoelectron microscopy (cryo-EM) structure of LysoPS-bound P2Y10 in complex with an engineered G13 heterotrimeric protein. The structure and a mutagenesis study highlight the predominant role of a comprehensive polar network in facilitating the binding and activation of the receptor by LysoPS. This interaction pattern is preserved in GPR174, but not in GPR34. Moreover, our structural study unveils the essential interactions that underlie the Gα13 engagement of P2Y10 and identifies key determinants for Gα12-vs.-Gα13-coupling selectivity, whose mutations selectively disrupt Gα12 engagement while preserving the intact coupling of Gα13. The combined structural and functional studies provide insights into the molecular mechanisms of LysoPS recognition and Gα12/13 coupling specificity.

16.
Commun Biol ; 6(1): 511, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173432

RESUMEN

Remdesivir is an antiviral drug used for COVID-19 treatment worldwide. Cardiovascular side effects have been associated with remdesivir; however, the underlying molecular mechanism remains unknown. Here, we performed a large-scale G-protein-coupled receptor screening in combination with structural modeling and found that remdesivir is a selective, partial agonist for urotensin-II receptor (UTS2R) through the Gαi/o-dependent AKT/ERK axis. Functionally, remdesivir treatment induced prolonged field potential and APD90 in human induced pluripotent stem cell (iPS)-derived cardiomyocytes and impaired contractility in both neonatal and adult cardiomyocytes, all of which mirror the clinical pathology. Importantly, remdesivir-mediated cardiac malfunctions were effectively attenuated by antagonizing UTS2R signaling. Finally, we characterized the effect of 110 single-nucleotide variants in UTS2R gene reported in genome database and found four missense variants that show gain-of-function effects in the receptor sensitivity to remdesivir. Collectively, our study illuminates a previously unknown mechanism underlying remdesivir-related cardiovascular events and that genetic variations of UTS2R gene can be a potential risk factor for cardiovascular events during remdesivir treatment, which collectively paves the way for a therapeutic opportunity to prevent such events in the future.


Asunto(s)
Antivirales , COVID-19 , Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Receptores Acoplados a Proteínas G , Humanos , Recién Nacido , COVID-19/patología , Tratamiento Farmacológico de COVID-19 , Insuficiencia Cardíaca/patología , Miocitos Cardíacos , Receptores Acoplados a Proteínas G/agonistas , Antivirales/farmacología
17.
Nat Commun ; 14(1): 7150, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932263

RESUMEN

Hydroxycarboxylic acid receptors (HCAR1, HCAR2, and HCAR3) transduce Gi/o signaling upon biding to molecules such as lactic acid, butyric acid and 3-hydroxyoctanoic acid, which are associated with lipolytic and atherogenic activity, and neuroinflammation. Although many reports have elucidated the function of HCAR2 and its potential as a therapeutic target for treating not only dyslipidemia but also neuroimmune disorders such as multiple sclerosis and Parkinson's disease, the structural basis of ligand recognition and ligand-induced Gi-coupling remains unclear. Here we report three cryo-EM structures of the human HCAR2-Gi signaling complex, each bound with different ligands: niacin, acipimox or GSK256073. All three agonists are held in a deep pocket lined by residues that are not conserved in HCAR1 and HCAR3. A distinct hairpin loop at the HCAR2 N-terminus and extra-cellular loop 2 (ECL2) completely enclose the ligand. These structures also reveal the agonist-induced conformational changes propagated to the G-protein-coupling interface during activation. Collectively, the structures presented here are expected to help in the design of ligands specific for HCAR2, leading to new drugs for the treatment of various diseases such as dyslipidemia and inflammation.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Ácidos Carboxílicos , Ligandos , Receptores Acoplados a Proteínas G/metabolismo
18.
Nat Commun ; 14(1): 1012, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823105

RESUMEN

Lysophosphatidylserine (LysoPS) is a lipid mediator that induces multiple cellular responses through binding to GPR174. Here, we present the cryo-electron microscopy (cryo-EM) structure of LysoPS-bound human GPR174 in complex with Gs protein. The structure reveals a ligand recognition mode, including the negatively charged head group of LysoPS forms extensive polar interactions with surrounding key residues of the ligand binding pocket, and the L-serine moiety buries deeply into a positive charged cavity in the pocket. In addition, the structure unveils a partially open pocket on transmembrane domain helix (TM) 4 and 5 for a lateral entry of ligand. Finally, the structure reveals a Gs engaging mode featured by a deep insertion of a helix 5 (αH5) and extensive polar interactions between receptor and αH5. Taken together, the information revealed by our structural study provides a framework for understanding LysoPS signaling and a rational basis for designing LysoPS receptor-targeting drugs.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Microscopía por Crioelectrón
19.
Nat Commun ; 14(1): 2005, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037825

RESUMEN

Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The ß2 adrenergic receptor's (ß2AR) 71 amino acid CT is a substrate for GPCR kinases and binds ß-arrestins to regulate signaling. Here we show that the ß2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking ß-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged ß2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , beta-Arrestinas/metabolismo , Línea Celular , Receptores Acoplados a Proteínas G/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
20.
Nanotechnology ; 22(31): 315702, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21727319

RESUMEN

The thermal boundary resistance between an individual carbon nanotube and a Au surface was measured using a microfabricated hot-film sensor. We used both closed and open-ended multi-walled carbon nanotubes and obtained thermal boundary resistance values of 0.947-1.22 × 10(7) K W(-1) and 1.43-1.76 × 10(7) K W(-1), respectively. Considering all uncertainties, including the contact area, the thermal boundary conductances per unit area were calculated to be 8.6 × 10(7)-2.2 × 10(8) W m(-2) K(-1) for c-axis orientation and 4.2 × 10(8)-1.2 × 10(9) W m(-2) K(-1) for the a-axis. The trend in these values agrees with the predicted conductance dependence on the interface orientation of anisotropic carbon-based materials. However, the measured thermal boundary conductances are found to be much larger than the reported results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA