Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Purinergic Signal ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325357

RESUMEN

Acute stress causes depressive-like reactions in the tail suspension (TST) and forced swim tests (FST) of mice. Similarly, inescapable foot shock is able to promote the development of anhedonia as indicated by decreased sucrose consumption of treated mice in the sucrose preference test (SPT). The astrocyte-specific deletion of the P2X7R by a conditional knockout strategy or its knockdown by the intracerebroventricular (i.c.v.) delivery of an adeno-associated virus (AAV) expressing P2X7R-specific shRNA in astrocytes significantly prolonged the immobility time in TST and FST. In contrast, the shRNA-induced downregulation of the P2X7R in neurons, oligodendrocytes, or microglia had no detectable effect on the behavior of treated mice in these tests. Moreover, sucrose consumption in the SPT was not altered following inescapable foot shock treatment in any of these cell type-specific approaches. Immunohistochemistry indicated that the administered astrocyte-specific AAV efficiently conveyed expression of shRNA by hippocampal CA1 astrocytes, but not by neurons. In conclusion, P2X7R in astrocytes of this area of the brain appears to be involved in depressive-like reactions to acute stressors.

2.
Purinergic Signal ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046648

RESUMEN

Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.

3.
Cereb Cortex ; 33(14): 8858-8875, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37183178

RESUMEN

Major depressive disorder is a frequent and debilitating psychiatric disease. We have shown in some of the acute animal models of major depressive disorder (tail suspension test and forced swim test) that depression-like behavior can be aggravated in mice by the microinjection into the medial prefrontal cortex of the P2X7R agonistic adenosine 5'-triphosphate or its structural analog dibenzoyl-ATP, and these effects can be reversed by the P2X7R antagonistic JNJ-47965567. When measuring tail suspension test, the prolongation of immobility time by the P2YR agonist adenosine 5'-[ß-thio]diphosphate and the reduction of the adenosine 5'-(γ-thio)triphosphate effect by P2Y1R (MRS 2179) or P2Y12R (PSB 0739) antagonists, but not by JNJ-47965567, all suggest the involvement of P2YRs. In order to elucidate the localization of the modulatory P2X7Rs in the brain, we recorded current responses to dibenzoyl-ATP in layer V astrocytes and pyramidal neurons of medial prefrontal cortex brain slices by the whole-cell patch-clamp procedure; the current amplitudes were not altered in preparations taken from tail suspension test or foot shock-treated mice. The release of adenosine 5'-triphosphate was decreased by foot shock, although not by tail suspension test both in the hippocampus and PFC. In conclusion, we suggest, that in the medial prefrontal cortex, acute stressful stimuli cause supersensitivity of P2X7Rs facilitating the learned helplessness reaction.


Asunto(s)
Trastorno Depresivo Mayor , Receptores Purinérgicos P2X7 , Ratones , Animales , Depresión , Corteza Prefrontal , Adenosina Trifosfato , Adenosina , Modelos Animales de Enfermedad
4.
Drug Resist Updat ; 70: 100988, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37413937

RESUMEN

Purinergic signalling, consisting of extracellular purines and purinergic receptors, modulates cell proliferation, invasion and immunological reaction during cancer progression. Here, we focus on current evidence that suggests the crucial role of purinergic signalling in mediating cancer therapeutic resistance, the major obstacle in cancer treatment. Mechanistically, purinergic signalling can modulate the tumor microenvironment (TME), epithelial-mesenchymal transition (EMT) and anti-tumor immunity, thus affecting drug sensitivity of tumor cells. Currently, some agents attempting to target purinergic signalling either in tumor cells or in tumor-associated immune cells are under preclinical or clinical investigation. Moreover, nano-based delivery technologies significantly improve the efficacy of agents targeting purinergic signalling. In this review article, we summarize the mechanisms of purinergic signalling in promoting cancer therapeutic resistance and discuss the potentials and challenges of targeting purinergic signalling in future cancer treatment.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Transducción de Señal , Proliferación Celular , Transición Epitelial-Mesenquimal , Microambiente Tumoral
5.
J Allergy Clin Immunol ; 151(4): 922-925, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36463978

RESUMEN

BACKGROUND: Although previous studies described the production of IgG antibodies in a subgroup of patients with common variable immunodeficiency (CVID) following messenger RNA vaccinations with BNT162b2 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (CVID responders), the functionality of these antibodies in terms of avidity as measured by the dissociation rate constant (kdis) and the antibody response to booster immunization has not been studied. OBJECTIVE: We sought to analyze in CVID responders and healthy individuals, the avidity of anti-SARS-CoV-2 serum antibodies and their neutralization capacity as measured by surrogate virus-neutralizing antibodies in addition to IgG-, IgM-, and IgA-antibody levels and the response of circulating (peripheral blood) follicular T-helper cells after a third vaccination with BNT162b2 SARS-CoV-2 messenger RNA vaccine. METHODS: Binding IgG, IgA, and IgM serum levels were analyzed by ELISA in patients with CVID responding to the primary vaccination (CVID responders, n = 10) and healthy controls (n = 41). The binding avidity of anti-spike antibodies was investigated using biolayer interferometry in combination with biotin-labeled receptor-binding-domain of SARS-CoV-2 spike protein and streptavidin-labeled sensors. Antigen-specific recall T-cell responses were assessed by measuring activation-induced markers by flow cytometry. RESULTS: After the third vaccination with BNT162b2, IgG-, IgM-, and IgA-antibody levels, surrogate virus-neutralizing antibody levels, and antibody avidity were lower in CVID responders than in healthy controls. In contrast, anti-SARS-CoV-2 spike protein avidity was comparable in CVID responders and healthy individuals following primary vaccination. Follicular T-helper cell response to booster vaccination in CVID responders was significantly reduced when compared with that in healthy individuals. CONCLUSIONS: Impaired affinity maturation during booster response provides new insight into CVID pathophysiology.


Asunto(s)
COVID-19 , Inmunodeficiencia Variable Común , Humanos , Vacuna BNT162 , Formación de Anticuerpos , COVID-19/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas contra la COVID-19 , Anticuerpos Bloqueadores , Anticuerpos Antivirales , Inmunoglobulina A , Inmunoglobulina M
6.
Gut ; 72(7): 1296-1307, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36270778

RESUMEN

OBJECTIVE: The extent to which tryptophan (Trp) metabolism alterations explain or influence the outcome of inflammatory bowel diseases (IBDs) is still unclear. However, several Trp metabolism end-products are essential to intestinal homeostasis. Here, we investigated the role of metabolites from the kynurenine pathway. DESIGN: Targeted quantitative metabolomics was performed in two large human IBD cohorts (1069 patients with IBD). Dextran sodium sulphate-induced colitis experiments in mice were used to evaluate effects of identified metabolites. In vitro, ex vivo and in vivo experiments were used to decipher mechanisms involved. Effects on energy metabolism were evaluated by different methods including Single Cell mEtabolism by profiling Translation inHibition. RESULTS: In mice and humans, intestinal inflammation severity negatively correlates with the amount of xanthurenic (XANA) and kynurenic (KYNA) acids. Supplementation with XANA or KYNA decreases colitis severity through effects on intestinal epithelial cells and T cells, involving Aryl hydrocarbon Receptor (AhR) activation and the rewiring of cellular energy metabolism. Furthermore, direct modulation of the endogenous tryptophan metabolism, using the recombinant enzyme aminoadipate aminotransferase (AADAT), responsible for the generation of XANA and KYNA, was protective in rodent colitis models. CONCLUSION: Our study identified a new mechanism linking Trp metabolism to intestinal inflammation and IBD. Bringing back XANA and KYNA has protective effects involving AhR and the rewiring of the energy metabolism in intestinal epithelial cells and CD4+ T cells. This study paves the way for new therapeutic strategies aiming at pharmacologically correcting its alterations in IBD by manipulating the endogenous metabolic pathway with AADAT.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Triptófano/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Intestinos , Inflamación
7.
Neurobiol Dis ; 185: 106229, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37453562

RESUMEN

Purinergic receptors (Rs) of the ATP/ADP, UTP/UDP (P2X, P2Y) and adenosine (A1, A2A)-sensitive classes broadly interfere with cognitive processes both under quasi normal and disease conditions. During neurodegenerative illnesses, high concentrations of ATP are released from the damaged neuronal and non-neuronal cells of the brain; then, this ATP is enzymatically degraded to adenosine. Thus, the primary injury in neurodegenerative diseases appears to be caused by various protein aggregates on which a superimposed damage mediated by especially P2X7 and A2AR activation develops; this can be efficiently prevented by small molecular antagonists in animal models of the above diseases, or are mitigated in the respective knockout mice. Dementia is a leading symptom in Alzheimer's disease (AD), and accompanies Parkinson's disease (PD) and Huntington's disease (HD), especially in the advanced states of these illnesses. Animal experimentation suggests that P2X7 and A2ARs are also involved in a number of psychiatric diseases, such as major depressive disorder (MDD), obsessive compulsive behavior, and attention deficit hyperactivity disorder. In conclusion, small molecular antagonists of purinergic receptors are expected to supply us in the future with pharmaceuticals which are able to combat in a range of neurological/psychiatric diseases the accompanying cognitive deterioration.


Asunto(s)
Trastorno Depresivo Mayor , Enfermedades del Sistema Nervioso , Animales , Ratones , Trastorno Depresivo Mayor/metabolismo , Receptores Purinérgicos/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Cognición
8.
Purinergic Signal ; 18(1): 83-92, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34799827

RESUMEN

Chronic pain is caused by cellular damage with an obligatory inflammatory component. In response to noxious stimuli, high levels of ATP leave according to their concentration gradient, the intracellular space through discontinuities generated in the plasma membrane or diffusion through pannexin-1 hemichannels, and activate P2X7Rs localized at peripheral and central immune cells. Because of the involvement of P2X7Rs in immune functions and especially the initiation of macrophage/microglial and astrocytic secretion of cytokines, chemokines, prostaglandins, proteases, reactive oxygen, and nitrogen species as well as the excitotoxic glutamate/ATP, this receptor type has a key role in chronic pain processes. Microglia are equipped with a battery of pattern recognition receptors that detect pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) from bacterial infections or danger associated molecular patterns (DAMPs) such as ATP. The co-stimulation of these receptors leads to the activation of the NLRP3 inflammasome and interleukin-1ß (IL-1ß) release. In the present review, we invite you to a journey through inflammatory and neuropathic pain, primary headache, and regulation of morphine analgesic tolerance, in the pathophysiology of which P2X7Rs are centrally involved. P2X7R bearing microglia and astrocyte-like cells playing eminent roles in chronic pain will be also discussed.


Asunto(s)
Dolor Crónico , Neuralgia , Adenosina Trifosfato/metabolismo , Dolor Crónico/metabolismo , Humanos , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Neuralgia/metabolismo , Receptores Purinérgicos P2X7/metabolismo
9.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35216493

RESUMEN

Epilepsy is one of the most common chronic diseases of the central nervous system (CNS). Treatment of epilepsy remains, however, a clinical challenge with over 30% of patients not responding to current pharmacological interventions. Complicating management of treatment, epilepsy comes with multiple comorbidities, thereby further reducing the quality of life of patients. Increasing evidence suggests purinergic signalling via extracellularly released ATP as shared pathological mechanisms across numerous brain diseases. Once released, ATP activates specific purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Among brain diseases, the P2X7R has attracted particular attention as a therapeutic target. The P2X7R is an important driver of inflammation, and its activation requires high levels of extracellular ATP to be reached under pathological conditions. Suggesting the therapeutic potential of drugs targeting the P2X7R for epilepsy, P2X7R expression increases following status epilepticus and during epilepsy, and P2X7R antagonism modulates seizure severity and epilepsy development. P2X7R antagonism has, however, also been shown to be effective in treating conditions most commonly associated with epilepsy such as psychiatric disorders and cognitive deficits, which suggests that P2X7R antagonisms may provide benefits beyond seizure control. This review summarizes the evidence suggesting drugs targeting the P2X7R as a novel treatment strategy for epilepsy with a particular focus of its potential impact on epilepsy-associated comorbidities.


Asunto(s)
Epilepsia/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Convulsiones/metabolismo , Animales , Hipocampo/metabolismo , Humanos , Inflamación/metabolismo , Transducción de Señal/fisiología
10.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36142735

RESUMEN

Aryl hydrocarbon receptor (AHR) plays pivotal roles in intestinal physiology and pathophysiology. Intestinal AHR is activated by numerous dietary, endogenous, and microbial ligands. Whereas the effects of individual compounds on AHR are mostly known, the effects of real physiological mixtures occurring in the intestine have not been studied. Using reporter gene assays and RT-PCR, we evaluated the combinatorial effects (3520 combinations) of 11 microbial catabolites of tryptophan (MICTs) on AHR. We robustly (n = 30) determined the potencies and relative efficacies of single MICTs. Synergistic effects of MICT binary mixtures were observed between low- or medium-efficacy agonists, in particular for combinations of indole-3-propionate and indole-3-lactate. Combinations comprising highly efficacious agonists such as indole-3-pyruvate displayed rather antagonist effects, caused by saturation of the assay response. These synergistic effects were confirmed by RT-PCR as CYP1A1 mRNA expression. We also tested mimic multicomponent and binary mixtures of MICTs, prepared based on the metabolomic analyses of human feces and colonoscopy aspirates, respectively. In this case, AHR responsiveness did not correlate with type of diet or health status, and the indole concentrations in the mixtures were determinative of gross AHR activity. Future systematic research on the synergistic activation of AHR by microbial metabolites and other ligands is needed.


Asunto(s)
Receptores de Hidrocarburo de Aril , Triptófano , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Humanos , Indoles/metabolismo , Indoles/farmacología , Intestinos , Ligandos , Propionatos , Piruvatos , ARN Mensajero/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Triptófano/farmacología
11.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163829

RESUMEN

Extracellular adenosine 5'-triphosphate (ATP) in the brain is suggested to be an etiological factor of major depressive disorder (MDD). It has been assumed that stress-released ATP stimulates P2X7 receptors (Rs) at the microglia, thereby causing neuroinflammation; however, other central nervous system (CNS) cell types such as astrocytes also possess P2X7Rs. In order to elucidate the possible involvement of the MDD-relevant hippocampal astrocytes in the development of a depressive-like state, we used various behavioral tests (tail suspension test [TST], forced swim test [FST], restraint stress, inescapable foot shock, unpredictable chronic mild stress [UCMS]), as well as fluorescence immunohistochemistry, and patch-clamp electrophysiology in wild-type (WT) and genetically manipulated rodents. The TST and FST resulted in learned helplessness manifested as a prolongation of the immobility time, while inescapable foot shock caused lower sucrose consumption as a sign of anhedonia. We confirmed the participation of P2X7Rs in the development of the depressive-like behaviors in all forms of acute (TST, FST, foot shock) and chronic stress (UCMS) in the rodent models used. Further, pharmacological agonists and antagonists acted in a different manner in rats and mice due to their diverse potencies at the respective receptor orthologs. In hippocampal slices of mice and rats, only foot shock increased the current responses to locally applied dibenzoyl-ATP (Bz-ATP) in CA1 astrocytes; in contrast, TST and restraint depressed these responses. Following stressful stimuli, immunohistochemistry demonstrated an increased co-localization of P2X7Rs with a microglial marker, but no change in co-localization with an astroglial marker. Pharmacological damage to the microglia and astroglia has proven the significance of the microglia for mediating all types of depression-like behavioral reactions, while the astroglia participated only in reactions induced by strong stressors, such as foot shock. Because, in addition to acute stressors, their chronic counterparts induce a depressive-like state in rodents via P2X7R activation, we suggest that our data may have relevance for the etiology of MDD in humans.


Asunto(s)
Depresión/psicología , Hipocampo/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Estrés Psicológico/psicología , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/metabolismo , Depresión/etiología , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo/citología , Masculino , Ratones , Microglía/metabolismo , Ratas , Estrés Psicológico/etiología , Estrés Psicológico/metabolismo
12.
Purinergic Signal ; 17(3): 385-392, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34156578

RESUMEN

Purinergic signaling plays a pivotal role in physiological processes and pathological conditions. Over the past decades, conventional pharmacological, biochemical, and molecular biology techniques have been utilized to investigate purinergic signaling cascades. However, none of them is capable of spatially and temporally manipulating purinergic signaling cascades. Currently, optical approaches, including optopharmacology and optogenetic, enable controlling purinergic signaling with low invasiveness and high spatiotemporal precision. In this mini-review, we discuss optical approaches for controlling purinergic signaling and their applications in basic and translational science.


Asunto(s)
Adenosina Trifosfato/metabolismo , Optogenética/métodos , Fotólisis , Receptores Purinérgicos/metabolismo , Transducción de Señal/fisiología , Adenosina Trifosfato/análisis , Animales , Humanos , Receptores Purinérgicos/análisis
13.
Purinergic Signal ; 17(3): 449-465, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34050505

RESUMEN

Extracellular purines are important signaling molecules involved in numerous physiological and pathological processes via the activation of P2 receptors. Information about the spatial and temporal P2 receptor (P2R) expression and its regulation remains crucial for the understanding of the role of P2Rs in health and disease. To identify cells carrying P2X2Rs in situ, we have generated BAC transgenic mice that express the P2X2R subunits as fluorescent fusion protein (P2X2-TagRFP). In addition, we generated a BAC P2Y1R TagRFP reporter mouse expressing a TagRFP reporter for the P2RY1 gene expression. We demonstrate expression of the P2X2R in a subset of DRG neurons, the brain stem, the hippocampus, as well as on Purkinje neurons of the cerebellum. However, the weak fluorescence intensity in our P2X2R-TagRFP mouse precluded tracking of living cells. Our P2Y1R reporter mice confirmed the widespread expression of the P2RY1 gene in the CNS and indicate for the first time P2RY1 gene expression in mouse Purkinje cells, which so far has only been described in rats and humans. Our P2R transgenic models have advanced the understanding of purinergic transmission, but BAC transgenic models appeared not always to be straightforward and permanent reliable. We noticed a loss of fluorescence intensity, which depended on the number of progeny generations. These problems are discussed and may help to provide more successful animal models, even if in future more versatile and adaptable nuclease-mediated genome-editing techniques will be the methods of choice.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Receptores Purinérgicos P2X2/biosíntesis , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2Y1/biosíntesis , Receptores Purinérgicos P2Y1/genética , Animales , Células Cultivadas , Cromosomas Artificiales Bacterianos/metabolismo , Femenino , Ganglios Espinales/metabolismo , Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Xenopus laevis
14.
Bioorg Chem ; 109: 104661, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636438

RESUMEN

Microbial metabolite mimicry is a new concept that promises to deliver compounds that have minimal liabilities and enhanced therapeutic effects in a host. In a previous publication, we have shown that microbial metabolites of L-tryptophan, indoles, when chemically altered, yielded potent anti-inflammatory pregnane X Receptor (PXR)-targeting lead compounds, FKK5 and FKK6, targeting intestinal inflammation. Our aim in this study was to further define structure-activity relationships between indole analogs and PXR, we removed the phenyl-sulfonyl group or replaced the pyridyl residue with imidazolopyridyl of FKK6. Our results showed that while removal of the phenyl-sulfonyl group from FKK6 (now called CVK003) shifts agonist activity away from PXR towards the aryl hydrocarbon receptor (AhR), the imidazolopyridyl addition preserves PXR activity in vitro. However, when these compounds are administered to mice, that unlike the parent molecule, FKK6, they exhibit poor induction of PXR target genes in the intestines and the liver. These data suggest that modifications of FKK6 specifically in the pyridyl moiety can result in compounds with weak PXR activity in vivo. These observations are a significant step forward for understanding the structure-activity relationships (SAR) between indole mimics and receptors, PXR and AhR.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Indoles/química , Indoles/farmacología , Receptor X de Pregnano/metabolismo , Adenocarcinoma , Animales , Línea Celular Tumoral , Neoplasias del Colon , Diseño de Fármacos , Femenino , Hepatocitos , Humanos , Intestinos , Hígado , Masculino , Ratones , Persona de Mediana Edad , Modelos Moleculares , Imitación Molecular , Estructura Molecular , Receptor X de Pregnano/química , Conformación Proteica , Relación Estructura-Actividad
15.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884700

RESUMEN

ATP is stored in millimolar concentrations within the intracellular medium but may be released to extracellular sites either through the damaged plasma membrane or by means of various transporters [...].


Asunto(s)
Enfermedades Neuroinflamatorias/metabolismo , Purinas/metabolismo , Receptores Purinérgicos/metabolismo , Animales , Humanos , Enfermedades Neuroinflamatorias/patología , Transducción de Señal
16.
Int J Mol Sci ; 23(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35008658

RESUMEN

Macrophages are mononuclear phagocytes which derive either from blood-borne monocytes or reside as resident macrophages in peripheral (Kupffer cells of the liver, marginal zone macrophages of the spleen, alveolar macrophages of the lung) and central tissue (microglia). They occur as M1 (pro-inflammatory; classic) or M2 (anti-inflammatory; alternatively activated) phenotypes. Macrophages possess P2X7 receptors (Rs) which respond to high concentrations of extracellular ATP under pathological conditions by allowing the non-selective fluxes of cations (Na+, Ca2+, K+). Activation of P2X7Rs by still higher concentrations of ATP, especially after repetitive agonist application, leads to the opening of membrane pores permeable to ~900 Da molecules. For this effect an interaction of the P2X7R with a range of other membrane channels (e.g., P2X4R, transient receptor potential A1 [TRPA1], pannexin-1 hemichannel, ANO6 chloride channel) is required. Macrophage-localized P2X7Rs have to be co-activated with the lipopolysaccharide-sensitive toll-like receptor 4 (TLR4) in order to induce the formation of the inflammasome 3 (NLRP3), which then activates the pro-interleukin-1ß (pro-IL-1ß)-degrading caspase-1 to lead to IL-1ß release. Moreover, inflammatory diseases (e.g., rheumatoid arthritis, Crohn's disease, sepsis, etc.) are generated downstream of the P2X7R-induced upregulation of intracellular second messengers (e.g., phospholipase A2, p38 mitogen-activated kinase, and rho G proteins). In conclusion, P2X7Rs at macrophages appear to be important targets to preserve immune homeostasis with possible therapeutic consequences.


Asunto(s)
Inflamasomas/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Humanos , Macrófagos/inmunología , Enfermedades Neuroinflamatorias , Receptores Purinérgicos P2X7/inmunología
17.
Purinergic Signal ; 16(3): 297-304, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32577957

RESUMEN

This review summarizes experimental evidence indicating that purinergic mechanisms are causally involved in acupuncture (AP)-induced analgesia. Electroacupuncture (EAP) and manual AP release at pain-relevant acupoints ATP which may activate purinergic P2X receptors (Rs) especially of the P2X3 type situated at local sensory nerve endings (peripheral terminals of dorsal root ganglion [DRG] neurons); the central processes of these neurons are thought to inhibit via collaterals of ascending dorsal horn spinal cord neurons, pain-relevant pathways projecting to higher centers of the brain. In addition, during AP/EAP non-neuronal P2X4 and/or P2X7Rs localized at microglial cells of the CNS become activated at the spinal or supraspinal levels. In consequence, these microglia secrete bioactive compounds such as growth factors, cytokines, chemokines, reactive oxygen, and nitrogen species, which modulate the ascending neuronal pathways conducting painful stimuli. Alternatively, ATP released at acupoints by AP/EAP may be enzymatically degraded to adenosine, stimulating in loco presynaptic A1Rs exerting an inhibitory influence on the primary afferent fibers (the above mentioned pain-sensing peripheral terminals of DRG neurons) which thereby fail to conduct action potentials to the spinal cord dorsal horn. The net effect of the stimulation of P2X3, P2X4, P2X7, and A1Rs by the AP/EAP-induced release of ATP/adenosine at certain acupoints will be analgesia.


Asunto(s)
Analgesia por Acupuntura , Receptores Purinérgicos/metabolismo , Transducción de Señal/fisiología , Animales , Ganglios Espinales/metabolismo
18.
J Electrocardiol ; 60: 118-125, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32361086

RESUMEN

BACKGROUND: Implantable Cardiac Monitors (ICMs) are used for long-term monitoring of arrhythmias. BIOMONITOR III is a novel ICM with a miniaturized profile, long sensing vector due to a flexible antenna, simplified implantation with a dedicated insertion tool for pocket formation and ICM placement in a single step, and daily automatic Home Monitoring (HM) function. METHODS: In 47 patients undergoing BIOMONITOR III insertion for any ICM indication, 16 investigators at 10 Australian sites assessed handling characteristics of the insertion tool, R-wave amplitudes, noise burden, P-wave visibility, and HM transmission success. Patients were followed for 1 month. RESULTS: All 47 attempted insertions were successful. Median time from skin incision to removal of the insertion tool after ICM insertion was 39 s (IQR 19-65) and to wound closure and cleaning was 4.7 min (IQR 3.5-7.8). All aspects of the insertion tool were rated as "good" or "excellent" in ≥97.9% and "fair" in ≤2.1% of patients, except for "force needed for tunnelling" (91.5% good/excellent, 8.5% fair). Based on HM data, R-waves in the first month were stable at 0.70 ± 0.37 mV. Median noise burden (disabling automatic rhythm evaluation) was 0.19% (IQR 0.00-0.93), equivalent to 2.7 min (IQR 0.0-13.4) per day. In HM-transmitted ECG strips with regular sinus rhythm, P-waves were visible in 89 ± 24% of heart cycles. Patient-individual automatic Home Monitoring transmission success was 98.0% ± 5.5%. CONCLUSIONS: The novel ICM performed well in all aspects studied, including fast insertion, reliable R-wave sensing, good P-wave visibility, and highly successful HM transmissions.


Asunto(s)
Electrocardiografía Ambulatoria , Electrocardiografía , Arritmias Cardíacas/diagnóstico , Australia , Humanos
19.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825423

RESUMEN

ATP is a (co)transmitter and signaling molecule in the CNS. It acts at a multitude of ligand-gated cationic channels termed P2X to induce rapid depolarization of the cell membrane. Within this receptor-channel family, the P2X7 receptor (R) allows the transmembrane fluxes of Na+, Ca2+, and K+, but also allows the slow permeation of larger organic molecules. This is supposed to cause necrosis by excessive Ca2+ influx, as well as depletion of intracellular ions and metabolites. Cell death may also occur by apoptosis due to the activation of the caspase enzymatic cascade. Because P2X7Rs are localized in the CNS preferentially on microglia, but also at a lower density on neuroglia (astrocytes, oligodendrocytes) the stimulation of this receptor leads to the release of neurodegeneration-inducing bioactive molecules such as pro-inflammatory cytokines, chemokines, proteases, reactive oxygen and nitrogen molecules, and the excitotoxic glutamate/ATP. Various neurodegenerative reactions of the brain/spinal cord following acute harmful events (mechanical CNS damage, ischemia, status epilepticus) or chronic neurodegenerative diseases (neuropathic pain, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis) lead to a massive release of ATP via the leaky plasma membrane of neural tissue. This causes cellular damage superimposed on the original consequences of neurodegeneration. Hence, blood-brain-barrier permeable pharmacological antagonists of P2X7Rs with excellent bioavailability are possible therapeutic agents for these diseases. The aim of this review article is to summarize our present state of knowledge on the involvement of P2X7R-mediated events in neurodegenerative illnesses endangering especially the life quality and duration of the aged human population.


Asunto(s)
Enfermedades del Sistema Nervioso Central/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Receptores Purinérgicos P2X7/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/metabolismo , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Epilepsia/metabolismo , Epilepsia/fisiopatología , Humanos , Ratones Transgénicos , Neuralgia/metabolismo , Neuralgia/patología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/deficiencia
20.
J Neurosci ; 37(30): 7049-7062, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747388

RESUMEN

P2X7 receptors (Rs) constitute a subclass of ATP-sensitive ionotropic receptors (P2X1-P2X7). P2X7Rs have many distinguishing features, mostly based on their long intracellular C terminus regulating trafficking to the cell membrane, protein-protein interactions, and post-translational modification. Their C-terminal tail is especially important in enabling the transition from the nonselective ion channel mode to a membrane pore allowing the passage of large molecules. There is an ongoing dispute on the existence of neuronal P2X7Rs with consequences for our knowledge on their involvement in neuroinflammation, aggravating stroke, temporal lobe epilepsy, neuropathic pain, and various neurodegenerative diseases. Whereas early results appeared to support the operation of P2X7Rs at neurons, more recently glial P2X7Rs are increasingly considered as indirect causes of neuronal effects. Specific tools for P2X7Rs are of limited value because of the poor selectivity of agonists, and the inherent failure of antibodies to differentiate between the large number of active and inactive splice variants, or gain-of-function and loss-of-function small nucleotide polymorphisms of the receptor. Unfortunately, the available P2RX7 knock-out mice generated by pharmaceutical companies possess certain splice variants, which evade inactivation. In view of the recently discovered bidirectional dialogue between astrocytes and neurons (and even microglia and neurons), we offer an alternative explanation for previous data, which assumedly support the existence of P2X7Rs at neurons. We think that the unbiased reader will follow our argumentation on astrocytic or microglial P2X7Rs being the primary targets of pathologically high extracellular ATP concentrations, although a neuronal localization of these receptors cannot be fully excluded either.


Asunto(s)
Adenosina Trifosfato/metabolismo , Astrocitos/metabolismo , Modelos Neurológicos , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Medicina Basada en la Evidencia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA