Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Saudi Pharm J ; 32(1): 101926, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38226350

RESUMEN

Carfilzomib (CFZ), a chemotherapeutic agent used for multiple myeloma treatments reported to cause high incidence of cardiac events either new onset and/or exacerbate formerly diagnosed heart failure with ventricular and myocardial dysfunction. Purpose: Current research designed to explore and examine the preventive effect of oxyphenbutazone in the CFZ -instigated cardiotoxicity. Methodology: Female Wistar Rats weighing 200-250 g selected randomly and grouped as follows: Group 1 designated as the Normal control and receive normal saline only. Group 2 served toxic control and exposed to CFZ (4 mg/kg, intraperitoneally [i.p.]). Group 3 & 4 served as treatment groups and administered with CFZ concomitantly orally fed with oxyphenbutazone at doses of 35 and 70 mg/kg/three times a week, respectively. The total duration of experimental protocol was of 21 days. After completion of the experiments animals subjected to blood collection using light ether anesthesia and serum was separated for biochemical analysis further. The serum levels of Mg+2, Ca+2 and cardiac enzymes (aspartate transaminase (AST), lactate dehydrogenase (LDH), creatine kinase (CK) and creatine kinase-MB (CK-MB) levels were estimated. Later animals sacrificed and heart tissue isolated for further examinations. Intracellular proteins NFkB and IkBα were estimated by western blot. Results: The serum analysis revealed that CFZ administration significantly elevated the levels of LDH, CK and CKMB in CFZ exposed animals when compared to normal animals while administration of oxyphenbutazone significantly reduced these biochemical changes, Intracellular antioxidant enzymes and NF-kB in treatment groups as compared to disease control animals. Conclusion: Findings of the research protocol suggests significant injuries to cardiac tissues when animals exposed to CFZ and Oxyphenbutazone protected the cardiac tissues.

2.
Saudi Pharm J ; 32(5): 102048, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38585197

RESUMEN

Memory loss or dementia is a progressive disorder, and one of its common forms is Alzheimer's disease (AD), effecting mostly middle aged and older adults. In the present study, we developed Rivastigmine (RIV) nanoparticles using poly(lactic-co-glycolic acid) (RIV-loaded PLGA NPs) and polyvinyl alcohol (PVA). The prepared RIV-PLGA nanoparticles was evaluated for the management of Alzheimer's disease (AD). The nanoparticles were prepared by the slightly modified nano-precipitation technique. The developed formulations were evaluated for particle size, zeta potential (ZP), polydispersibility index (PDI) and surface morphology and drug content. The experimental result revealed that prepared RIV-loaded PLGA NPs (F1) was optimized having particle size (61.2 ± 4.6 nm), PDI (0.292), ZP (-11.2 ± 1.2). SEM study confirms the prepared nanoparticles depicted non-aggregated as well smooth surface particles without any fracture. This formulation (F1) was further assessed for in vivo studies on animal model. A pharmacological screening on an animal model of Alzheimer's disease revealed that RIV-loaded PLGA NPs formulations treat CNS disorders like Alzheimer's effectively. In addition to that, an in-vivo brain cholinesterase estimation study found that, animals treated with optimized formulation significantly (p < 0.01) reduced brain cholinesterase activity when compared to scopolamine-treated animals. According to the above results, it can be concluded that RIV-loaded PLGA NPs are ideal carriers for delivering the drug at a specific target site in the brain, thus may treat Alzheimer's disease efficiently and improve patient compliance.

3.
Saudi Pharm J ; 31(1): 147-153, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685301

RESUMEN

The complicated multiple sclerosis (MS) can exhibit subacute sight deterioration and can lead to total deprivation of vision. In the current work, we explored the therapeutic outcome of Cathepsin B inhibitor (CA-074) against retinopathy and optic neuritis (ON) caused by experimental autoimmune encephalomyelitis (EAE) induced by proteolipid protein peptide (PLP) in female SJL/J mice. A daily dose of 10 mg/kg CA-074 was administered to the EAE mice intraperitoneally for 14 days from day 14 post-immunization until day 28. The Western blot and immunofluorescence analyses show inflammation in the optic nerve through the elevation of iNOS and NFkB markers in EAE mice. Optic neuritis was reported which is a consequence of demyelination and axon injury, estimated with the reduction in myelin basic protein (MBP). The glial fibrillary acidic protein (GFAP) expression level was found to be elevated in the retina of EAE mice which confirmed the retinopathy. The administration of CA-074 ameliorated optic neuritis and retinopathy by reducing inflammation. The treatment with CA-074 also reduced the demyelination and axonal injuries in the EAE mice. The findings of this study have shown the protective effect of CA-074 in the case of retinopathy and ON inflicted by EAE in SJL/J mice.

4.
Saudi Pharm J ; 31(7): 1327-1338, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37323920

RESUMEN

Lipopolysaccharides (LPS), the lipid component of gram-negative bacterial cell wall, is recognized as the key factor in acute lung inflammation and is found to exhibit severe immunologic reactions. Phosphodiesterase-4 (PDE-4) inhibitor: "apremilast (AP)" is an immune suppressant and anti-inflammatory drug which introduced to treat psoriatic arthritis. The contemporary experiment designed to study the protective influences of AP against LPS induced lung injury in rodents. Twenty-four (24) male experimental Wistar rats selected, acclimatized, and administered with normal saline, LPS, or AP + LPS respectively from 1 to 4 groups. The lung tissues were evaluated for biochemical parameters (MPO), Enzyme Linked Immunosorbent Assay (ELISA), flowcytometry assay, gene expressions, proteins expression and histopathological examination. AP ameliorates the lung injuries by attenuating immunomodulation and inflammation. LPS exposure upregulated IL-6, TNF-α, and MPO while downregulating IL-4 which were restored in AP pretreated rats. The changes in immunomodulation markers by LPS were reduced by AP treatment. Furthermore, results from the qPCR analysis represented an upregulation in IL-1ß, MPO, TNF-α, and p38 whereas downregulated in IL-10 and p53 gene expressions in disease control animals while AP pretreated rats exhibited significant reversal in these expressions. Western blot analysis suggested an upregulation of MCP-1, and NOS-2, whereas HO-1, and Nrf-2 expression were suppressed in LPS exposed animals, while pretreatment with AP showed down regulation in the expression MCP-1, NOS-2, and upregulation of HO-1, and Nrf-2 expression of the mentioned intracellular proteins. Histological studies further affirmed the toxic influences of LPS on the pulmonary tissues. It is concluded that, LPS exposure causes pulmonary toxicities via up regulation of oxidative stress, inflammatory cytokines and stimulation of IL-1ß, MPO, TNF-α, p38, MCP-1, and NOS-2 while downregulation of IL-4, IL-10, p53, HO-1, and Nrf-2 at different expression level. Pretreatment with AP controlled the toxic influences of LPS by modulating these signaling pathways.

5.
Clin Exp Pharmacol Physiol ; 48(4): 478-489, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368625

RESUMEN

Cardiovascular disease is a leading cause of death in diabetic patients. Hyperglycaemia and iatrogenic hypoglycaemia exacerbate several pathogenic mechanisms underlying hypertension and heart diseases. Carnitine is a potent endogenous antioxidant and cellular fatty acid transporter for antioxidative stress and energy production in the cardiovascular system. The current study aimed to find the role of carnitine in the regulation of hypoglycaemia-induced hypertension and cardiac hypertrophy. Male rats received insulin glargine (InG) to induce hypoglycaemia followed by D-carnitine or acetyl-L-carnitine for carnitine depletion or carnitine supplementation, respectively. The obtained results showed that carnitine deficiency provoked hypoglycaemia-induced hypertension. Mean arterial pressure was elevated from 78.16 ± 11.4 to 100 ± 5.11 mm Hg in InG treated group, and from 78.2 ± 8.5 to 123.4 ± 28.2 mm Hg in InG + D-carnitine treated group. Acetyl-L-carnitine resisted the elevation in blood pressure in all hypoglycaemic animals and kept it within the normal values (68.33 ± 6.7 mm Hg). Acetyl-L-carnitine increased myocardial carnitine content leading to the attenuation of hypoglycaemia-induced oxidative stress, which was evaluated through measurement of the oxidative stress biomarkers such as inducible nitric oxide synthase, NAD(P)H quinone dehydrogenase-1, heme oxygenase-I, and glutathione S-transferase. Moreover, acetyl-L-carnitine prevented induction of gene expression of cardiac hypertrophy markers during hypoglycaemic conditions, which was assessed via the evaluation of mRNA expression of α-myosin heavy chain and ß-myosin heavy chain. These findings demonstrate that carnitine might play an essential role in prevention of hypoglycaemia-induced hypertension and cardiac hypertrophy through providing energy and antioxidants to the cardiovascular system.


Asunto(s)
Presión Sanguínea , Cardiomiopatías , Carnitina/deficiencia , Hiperamonemia , Enfermedades Musculares , Animales , Hipertensión , Óxido Nítrico Sintasa de Tipo II , Estrés Oxidativo/efectos de los fármacos , Ratas
6.
Molecules ; 26(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652584

RESUMEN

The purpose of the research was to examine the protective effect of essential oil from Thymus serrulatus Hochst. ex Benth. (TSA oil) against cadmium (Cd)-induced renal toxicity. The experimental protocol was designed using 30 healthy adult Wistar albino rats allocated into five groups containing six animals in each group. Group 1 was treated as normal control and groups 2, 3, 4, and 5 were treated with cadmium chloride (CdCl2, 3 mg/kg, IP) for 7 days. Group 3 was also treated with silymarin (100 mg/kg, PO) as a standard group, while groups 4 and 5 were administered with TSA oil at doses of 100 and 200 mg/kg PO, respectively. The nephrotoxicity was measured with various parameters such as kidney function markers, oxidative stress markers (glutathione (GSH) and malondialdehyde (MDA)), and messenger ribonucleic acid (mRNA) expression levels of inflammatory factors. The histological studies were also evaluated in the experimental protocol. The CdCl2-treated groups showed a significant increase in the levels of serum kidney function markers along with MDA levels in kidney homogenate. However, renal GSH level was found to be reduced significantly. It was found that CdCl2 significantly upregulated the nuclear factor levels of kappaB (NF-κB p65), inducible nitric oxide synthase (iNOS), and small mothers against decapentaplegic (Smad2) as compared to the normal control group. On the other hand, TSA oil significantly improved the increased levels of serum kidney function markers, non-enzymatic antioxidants, and lipid peroxidation. In addition, TSA oil significantly downregulated the increased expression of NF-κB p65, iNOS, and Smad2 in Cd-intoxicated rats. Moreover, the histological changes in the tissue samples of the kidney of Cd-treated groups were significantly ameliorated in the silymarin- and TSA-oil-treated groups. The present study reveals that TSA oil ameliorates Cd-induced renal injury, and it is also proposed that the observed nephroprotective effect could be due to the antioxidant potential of TSA oil and healing due to its anti-inflammatory action.


Asunto(s)
Enfermedades Renales/tratamiento farmacológico , Aceites Volátiles/química , Estrés Oxidativo/efectos de los fármacos , Thymus (Planta)/química , Animales , Antioxidantes/química , Antioxidantes/farmacología , Cadmio/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Enfermedades Renales/inducido químicamente , FN-kappa B/genética , Óxido Nítrico Sintasa de Tipo II/genética , Aceites Volátiles/farmacología , Ratas , Proteína Smad2/genética
7.
J Thromb Thrombolysis ; 50(2): 361-370, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32358665

RESUMEN

Rivaroxaban (RIVA) inhibits factor Xa and exhibits antithrombotic and anti-inflammatory activities by inhibiting several cellular signaling molecules. Sunitinib (SUN) is FDA approved first-line drug for metastatic renal cancers and advanced cancerous states of gastrointestinal tract. Present hypothesis was aimed to examine the nephroprotective potential of RIVA in SUN-induced nephrotoxicity, mediated through the inhibition of oxidative stress-induced apoptosis and inflammation, via the TNF-α/NFk-B signaling pathways. Wistar rats 200-250 g were selected and divided randomely in 5 groups (n = 6): Group 1 kept as normal control; Group 2 as disease control and exposed to SUN 50 mg/kg thrice-weekly upto 21 days; Groups 3 and 4, were treatment groups and administered SUN 50 mg/kg thrice-weekly as of group 2 and treated with RIVA 5 and 10 mg/kg/daily for 21 days, respectively; and Group 5 fed with RIVA alone (10 mg/kg/daily for 21 days). Serum was separated from blood to estimate serum biochemical parameters and kidney tissues were collected to estimate antioxidant enzyme, mRNA and protein expression. SUN exposure significantly elevated levels of creatinine, urea, uric acid, blood urea nitrogen, albumin, and bilirubin, and decreased serum magnesium and iron levels. Malondialdehyde and catalase levels were significantly increased and glutathione and glutathione reductase levels were significantly decreased. Intracellular levels of caspase-3 and TNF-α were significantly increased; RIVA treatment restored the altered levels. In SUN-exposed animals, western blotting revealed significantly elevated NFk-B, IL-17, and MCP-1 expression, and IKBα levels were significantly downregulated; RIVA restored these levels to normal values.RIVA treatment significantly restored the apoptotic and inflammatory parameters in SUN-damaged renal tissues.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Glomerulonefritis/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Riñón/efectos de los fármacos , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Rivaroxabán/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Modelos Animales de Enfermedad , Glomerulonefritis/inducido químicamente , Glomerulonefritis/metabolismo , Glomerulonefritis/patología , Riñón/metabolismo , Riñón/patología , Masculino , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sunitinib
8.
Saudi Pharm J ; 28(6): 641-647, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32550793

RESUMEN

Isoniazid is the most commonly used drug for treatment of tuberculosis, and is administered individually or in combination with other drugs as standard first line therapy. Offsetting its efficacy, severe adverse effects, especially peripheral neuropathy and hepatotoxicity, are associated with isoniazid therapy, limiting its use in tuberculosis. Isoniazid is acetylated in vivo producing hydrazine and acetyl hydrazine, which are responsible for hepatotoxicity. Marked pharmacogenetic differences in acetylation have been reported among different population across the globe. This study evaluates isoniazid acetylation patterns in tuberculosis patients receiving DOT therapy under the Revised National Tuberculosis Control Program (RNTCP) in a specialized tuberculosis hospital in north India. Of 351 patients from whom samples were taken for biochemical analysis of adverse events, 36 were assessed for acetylation patterns. Blood samples were taken 1 h after administration of a 600 mg dose of isoniazid, and plasma concentrations of isoniazid were determined using a validated HPLC method. Of these 36 patients, 20 (55.56%) were slow acetylators and 16 (44.44%) were fast acetylators. Our results are consistent with those of an earlier study conducted in a different region of India. Most biochemical changes produced during long-term isoniazid therapy resolve after therapy is terminated.

9.
Saudi Pharm J ; 28(6): 698-702, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32550801

RESUMEN

The bronchodilator effects of Roflumilast "a selective phosphodiesterase type-4 (PDE4)" inhibitor studied in this experimental protocol. The spiral strips of isolated guinea-pig tracheal chains mounted in organ bath and maintained in Krebs solution ventilated with carbogen at 32 °C and in Ca++ restricted krebs solution. PDE inhibitory activity was evaluated by recording dose response curves using inhibitory effect of isoprenaline on CCh induced contractions. For confirmation of PDE inhibition the intracellular cAMP levels were also estimated. Roflumilast resulted a sharp inhibition in contractile responses of carbachol (CCh, 1 µM) and K+ (80 mM) and the results were almost similar to verapamil. In Ca++ restricted Krebs solution, a rightward shift in the Ca++ response curves observed in the tracheal chain strips which were pretreated with Roflumilast (0.001-0.003 mg/mL) and the maximum response was suppressed, similarly as with verapamil. PDE inhibitory effect of Roflumilast evaluated by recording dose-dependent (0.03-0.1 mg/mL) responses, the isoprenaline-induced inhibitory dose response curves shifted leftward similar to papaverine (PDE inhibitor). Pretreatment with Roflumilast exhibited elevated intracellular cAMP levels in tracheal strips. Findings of the experiment conclude bronchodilatory influence of Roflumilast via PDE and Ca++ channel inhibition. Results of current experiment offers comprehensive mechanistic background of Roflumilast in future as therapeutic bronchodilator for hyperactive bronchial airway diseases.

10.
Saudi Pharm J ; 28(3): 281-289, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32194329

RESUMEN

Otostegia fruticosa, a plant belonging to the family Lamiaceae, is endemic to Ethiopia. In Ethiopian traditional medicine, O. fruticosa has been used for the treatment of several respiratory-related disorders. The present study was designed to evaluate the bronchodilatory and antimicrobial activities of O. fruticosa leaves crude extract (Of.Cr). Ex-vivo experiments were conducted on guinea-pig trachea provided with physiological oxygenated buffer solution using emkaBath setup. The crude extract was analyzed by gas chromatography-mass spectrometry. Of.Cr, showed the presence of terpenes, fragrance components, saponins, and higher fatty acids. Of.Cr when tested on contracted tracheal chains with carbamylcholine (CCh, 1 µM) and high K+ (80 mM) produced relaxation by showing higher potency against CCh with incomplete inhibition of high K+. Dicyclomine, used as a positive control, also showed selectively higher potency to inhibit CCh when compared with its effect against K+. In the anticholinergic curves, Of.Cr at 1 mg/mL deflected CCh-induced concentration-response curves (CRCs) competitively to the right like dicyclomine (0.03 µM) and atropine whereas a higher dose of Of.Cr (3 mg/mL) produced a non-parallel shift in the CCh curves like a higher dose of dicyclomine (0.1 µM). In the calcium channel inhibitory assay, Of.Cr at 3 & 5 mg/mL, deflected CRCs of Ca++ to the right like verapamil, used as positive control. Of.Cr, at concentrations (1-3 mg/mL) increases cAMP levels in isolated tracheal homogenates, similar to positive control phosphodiesterase inhibitor (papaverine). When tested for antibacterial activity against standard and clinical strains, Of.Cr was found more active (MIC 475 µg/ml) against S. aureus (NCTC 6571), while the maximum inhibition (MIC 625 µg/ml) was observed by the extract when tested against MRSA. These results determine the mechanistic pathways of the observed bronchodilatory effect of Otostegia fruticosa with a combination of anticholinergic and dual inhibition of phosphodiesterase and voltage-gated Ca++ channels.

11.
Saudi Pharm J ; 28(3): 316-324, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32194333

RESUMEN

PURPOSE: Understanding the appearance of anti-tubercular drug-related adverse drug reactions (ADRs) in patients receiving tuberculosis (TB) treatment is important, and may be related to morbidity and mortality if not recognized early. Here, we aimed to characterize the mechanisms underlying adverse drug reactions due to combination anti-tuberculosis therapy of the Revised National Tuberculosis Control Program (RNTCP). METHODS: This was a prospective observational study conducted in 9 DOTS centers of New Delhi, India. All enrolled TB patients receiving first-line tuberculosis treatment as per RNTCP guidelines were monitored for ADRs. All ADRs that appeared during the treatment were recorded and analyzed. RESULTS: The study included 1011 TB patients on anti-TB treatment under DOTS. According to Naranjo's probability scale, of a total 351 (34.72%) reported adverse events, 102 (10.09%) were definite, 59 (5.83%) probable, 123 (12.17%) possible, and 67 (6.63%) doubtful. On the Hartwig severity scale, of the 351 adverse drug events, 225 (22.26%) were mild, 105 (10.38%) were moderate, and 21 (2.08%) were severe. Out of 102 reported adverse drug reactions, 81 (79.41%) were moderate and 21 (20.59%), while 65.28% did not experience any ADRs. CONCLUSIONS: Directly Observed Treatment (DOT) is effective and safe compared to daily treatment regimens. Patients receiving DOTS therapy needed close monitoring for adverse events. Therefore, a pharmacovigilance program should be added at the National level to accesses the adverse event incidence.

12.
Inflammopharmacology ; 27(4): 817-827, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30600471

RESUMEN

BACKGROUND: Carfilzomib (CFZ), a proteasome inhibitor approved by the FDA to treat multiple myeloma, may cause nephrotoxicity. HYPOTHESIS: Rutin is a bioflavonoid with antioxidant properties. We aimed to examine whether rutin protects the kidney from CFZ-induced nephrotoxicity. STUDY DESIGN: This study aimed to demonstrate the effect of rutin on CFZ-induced renal injury via the inhibition of oxidative stress and inflammation. METHODS: Wistar albino rats were divided into six groups (n = 6): Group 1 (normal control; NC) was administered normal saline for 3 weeks; Group 2 (CFZ/toxic group) received CFZ [4 mg/kg, intraperitoneal (i.p.) injection] twice weekly for 3 weeks; Group 3 (standard treatment group) was administered CFZ (4 mg/kg, i.p.) and olmesartan (2 mg/kg, p.o.) for 3 weeks; Group 4 was administered CFZ (4 mg/kg, i.p.) and rutin (10 mg/kg, p.o.) for 3 weeks; Group 5 was administered CFZ (4 mg/kg, i.p.) and rutin (20 mg/kg, p.o.) for 3 weeks; and Group 6 was administered CFZ (4 mg/kg, i.p.) and rutin (40 mg/kg, p.o.) for 3 weeks. We carried out haematological and biochemical analyses, determined oxidative stress, caspase-3 activity, and protein levels, and performed a histopathological evaluation to confirm CFZ-induced nephrotoxicity and its prevention by rutin administration. RESULTS: Exposure to only CFZ significantly (p < 0.05) increased white blood cell (WBC) count, Hb%, and HTC% concentration; however, these features were significantly decreased (p < 0.05) when olmesartan and rutin were administered. CFZ administration significantly decreased (p < 0.0001) the level of antioxidant enzymes; whereas, administration of olmesartan and rutin significantly reversed (p < 0.05) their levels toward the normal range. The levels of caspase-3 enzyme significantly increased (p < 0.001) in the CFZ group and were reduced toward the normal values by olmesartan and rutin administration. Furthermore, the results of NOS-2, NF-κB, IkBa, and IL-17 protein estimation and the histopathological evaluation strengthened our findings that rutin exhibits a protective effect against CFZ-induced nephrotoxicity. CONCLUSION: These findings clearly demonstrate that rutin ameliorates CFZ-induced oxidative stress and inflammation in nephrotoxicity via the NOS-mediated NF-κB signaling pathway.


Asunto(s)
Inflamación/tratamiento farmacológico , Óxido Nítrico Sintasa/metabolismo , Oligopéptidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Rutina/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Flavonoides/farmacología , Imidazoles/farmacología , Inflamación/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , FN-kappa B/metabolismo , Ratas , Ratas Wistar , Tetrazoles/farmacología
13.
Saudi Pharm J ; 27(5): 673-681, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31297022

RESUMEN

Cadmium (Cd), a potent cardiotoxic environmental heavy metal, induces oxidative stress and membrane disturbances in cardiac myocytes. Phosphodiesterase (PDEs) retards the positive inotropic effects of ß-adrenoceptor activation by decreasing levels of cAMP via degradation. Hence, PDE inhibitors sensitize the heart to catecholamine and are therefore, used as positive inotropic agents. The present study was designed to probe the potential attenuating effects of the selective PDE4 inhibitor (Roflumilast, ROF), on cardiac biomarkers, lipid profile, lipid peroxidation products, antioxidant status and histology of cardiac tissues against Cd-induced cardiotoxicity in rats. Rats were randomly distributed into four different groups: group 1, served as the normal control group. Group 2, served as the toxic control group and were administered Cd (3 mg/kg, i.p.) for next 7 days. Groups 3 and 4, served as treatment groups that received Cd with concomitant oral administration of ROF doses (0.5 and 1.5 mg/kg), respectively for 7 days. Serum samples of toxic control group rats resulted in significant (P < 0.001) increase in lactate dehydrogenase (LDH), creatine phosphokinase (CPK), total cholesterol (TC), triglycerides (TG) and low density lipoproteins (LDL) levels with concomitant decrease in high density lipoproteins (HDL) levels in serum which were found reversed with both of ROF treatment groups. Cd also causes significant increased (P < 0.001) in myocardial malondialdehyde (MDA) contents while cardiac glutathione (GSH) level, superoxide dismutase (SOD) and catalase (CAT) enzyme activities were found decreased whereas both doses of ROF, significantly reversed these oxidative stress markers and antioxidant enzymes. Cardiotoxicity induced by Cd also resulted in enhanced expression of non-phosphorylated and phosphorylated form of NF-κB p65 and decreased expression of glutathione-S-transferase (GST) and NQO1 which were found reversed with ROF treatments, comparable to normal control group. Histopathological changes were also improved by ROF administration as compared to Cd treated rats alone. In conclusion, Roflumilast exhibited attenuating effect against Cd-induced cardiac toxicity.

14.
AAPS PharmSciTech ; 19(1): 123-133, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28620763

RESUMEN

Sunitinib malate (SM) is reported as a weakly soluble drug in water due to its poor dissolution rate and oral bioavailability. Hence, in the current study, various "self-nanoemulsifying drug delivery systems (SNEDDS)" of SM were prepared, characterized and evaluated for the enhancement of its in vitro dissolution rate and anticancer efficacy. On the basis of solubilization potential of SM in various excipients, "Lauroglycol-90 (oil), Triton-X100 (surfactant) and Transcutol-P (cosurfactant)" were selected for the preparation of SM SNEDDS. SM-loaded SNEDDS were developed by spontaneous emulsification method, characterized and evaluated for "thermodynamic stability, self-nanoemulsification efficiency, droplet size, polydispersity index (PDI), zeta potential (ZP), surface morphology, refractive index (RI), the percent of transmittance (% T) and drug release profile." In vitro dissolution rate of SM was significantly enhanced from an optimized SNEDDS in comparison with SM suspension. The optimized SNEDDS of SM with droplet size of 42.3 nm, PDI value of 0.174, ZP value of -36.4 mV, RI value of 1.339, % T value of 97.3%, and drug release profile of 95.4% (after 24 h via dialysis membrane) was selected for in vitro anticancer efficacy in human colon cancer cells (HT-29) by MTT assay. MTT assay indicated significant anticancer efficacy of optimized SM SNEDDS against HT-29 cells in comparison with free SM. The results of this study showed the great potential of SNEDDS in the enhancement of in vitro dissolution rate and anticancer efficacy of poorly soluble drug such as SM.


Asunto(s)
Antineoplásicos/análisis , Indoles/análisis , Pirroles/análisis , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Emulsiones , Excipientes , Células HT29 , Humanos , Indoles/química , Indoles/uso terapéutico , Nanopartículas , Pirroles/química , Pirroles/uso terapéutico , Diálisis Renal , Solubilidad , Sunitinib , Tensoactivos , Suspensiones
15.
J Biochem Mol Toxicol ; 31(4)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27900802

RESUMEN

Overdose of acetaminophen (APAP) is often associated with hepatotoxicity. Carfilzomib (CFZ) shows multiple pharmacological activities including anti-inflammatory potential. Therefore, this study was undertaken to evaluate the possible therapeutic effects of CFZ against APAP-induced hepatotoxicity. Hepatotoxicity was induced by administration of APAP (350 mg/kg, intraperitoneal). Mice were given CFZ (0.125, 0.25, or 0.5 mg/kg, intraperitoneal) 1.5 h after APAP administration. Animals were sacrificed on 6 h and blood and liver tissue samples were collected for analysis. In CFZ-post-treated group, there was significant and dose-dependent decrease in serum alanine aminotransferase levels. The level of tumor necrosis factor-α (TNF-α), reactive oxygen species, and NO decreased, whereas glutathione increased significantly by CFZ post-treatment. Upregulated mRNA expression of COX-II and iNOS were significantly downregulated by CFZ post-treatment. CFZ may exert its hepatoprotective action by alleviating inflammatory, oxidative, and nitrosative stress via inhibition of TNF-α, COX-II, and iNOS.


Asunto(s)
Acetaminofén/toxicidad , Hígado/efectos de los fármacos , Oligopéptidos/uso terapéutico , Inhibidores de Proteasoma/uso terapéutico , Acetaminofén/administración & dosificación , Acetaminofén/efectos adversos , Animales , Ciclooxigenasa 2/efectos de los fármacos , Ciclooxigenasa 2/genética , Regulación de la Expresión Génica , Glutatión , Inflamación/tratamiento farmacológico , Inyecciones Intraperitoneales , Hígado/metabolismo , Masculino , Ratones , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/genética , Oligopéptidos/administración & dosificación , Oligopéptidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Especies Reactivas de Oxígeno
16.
Immunol Invest ; 45(4): 349-69, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27104958

RESUMEN

Dexamethasone (DEX) is a synthetic glucocorticoid with potent anti-inflammatory effects that is widely used to treat inflammatory diseases. The aim of the present study was to investigate the possible protective effect of DEX on the lipopolysaccharides (LPS)-induced acute lung injury (ALI) in a mouse model. Animals were pretreated with DEX (5 and 10 mg/kg, i.p.) for seven days and acute lung injury was induced by intranasal (i.n.) administration of LPS on day 7. In the present study, administration of LPS resulted in significant increase in neutrophils and lymphocytes count whereas a substantial reduction in T cell subsets (CD3(+) and CD4(+)) and pro-inflammatory (IL-6 and TNF-α) cytokines occurred, which were reversed by DEX treatment. RT-PCR analysis revealed an increased mRNA expression of IL-6, TNF-α, COX-2, iNOS, and NF-κB p65 and decreased IL-10 in the LPS group, which were reversed by treatment with DEX in lung tissues. Western blot analysis revealed an increased expression of COX-2, iNOS and NF-κB p65 in the LPS-group, which was reduced by treatment with DEX. Compared with the LPS group, the DEX treatment also demonstrated a considerable increase in the protein expression level of IL-10 cytokine. Administration of LPS resulted in marked increase in malondialdehyde (MDA) levels and myeloperoxidase (MPO) activity whereas noticeable decrease in glutathione (GSH) content. These changes were significantly reversed by treatment with DEX. The histological examinations revealed protective effect of DEX while LPS group aggravated lung injury. The present findings demonstrate the potent anti-inflammatory action of the DEX against acute lung injury induced by LPS.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Dexametasona/uso terapéutico , Interleucina-10/metabolismo , Pulmón/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Animales , Células Cultivadas , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-10/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/inmunología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , FN-kappa B/genética , FN-kappa B/metabolismo , Neutrófilos/inmunología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
17.
J Biochem Mol Toxicol ; 30(11): 559-566, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27301782

RESUMEN

In order to study the mechanisms underlying the alleviation of aflatoxin B1-induced genomic damage by proanthocyanidins (PAs), we examined the modulation of oxidative DNA damage induced by aflatoxin B1 in PAs-pretreated animals. The effects of PAs on changes in the expression of DNA damage and repair genes induced by aflatoxin B1 were also evaluated in rat marrow cells. Administration of PAs before aflatoxin B1 significantly mitigated aflatoxin B1-induced oxidative DNA damage in a dose-dependent manner. Aflatoxin B1 treatment induced significant alterations in the expression of specific DNA repair genes, and the pre-treatment of rats with PAs ameliorated the altered expression of these genes. Conclusively, PAs protect against aflatoxin B1-induced oxidative DNA damage in rats. These protective effects are attributed to the antioxidant effects of PA and enhanced DNA repair through modulation of DNA repair gene expression. Therefore, PAs are a promising chemoprotective agent for averting genotoxic risks associated with aflatoxin B1 exposure.


Asunto(s)
Aflatoxina B1/toxicidad , Anticarcinógenos/farmacología , Antioxidantes/farmacología , Reparación del ADN/efectos de los fármacos , Proantocianidinas/farmacología , Aflatoxina B1/antagonistas & inhibidores , Aflatoxina B1/aislamiento & purificación , Animales , Aspergillus flavus/química , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Ensayo Cometa , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Masculino , Micronúcleos con Defecto Cromosómico , Pruebas de Micronúcleos , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Ratas , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Toxicol Mech Methods ; 26(9): 700-708, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27785949

RESUMEN

Carfilzomib (CFZ), is a potent, selective second generation proteasome inhibitor, used for the treatment of multiple myeloma. The aim of the present study was to investigate the possible protective effect of apremilast (AP) on the CFZ -induced cardiotoxicity. Rats were randomly divided into four groups: Group 1, served as the control group, received normal saline. Group 2, served as the toxic group, received CFZ (4 mg/kg, intraperitoneally [i.p.]). Groups 3 and 4, served as treatment groups, and received CFZ with concomitant oral administration of AP in doses of 10 and 20 mg/kg/day, respectively. In the present study, administration of CFZ resulted in a significant increase in serum aspartate transaminase (AST), lactate dehydrogenase (LDH), creatine kinase (CK) and creatine kinase-MB (CK-MB), which were reversed by treatment with AP. CFZ resulted in a significant increase in heart malondialdehyde (MDA) contents and decrease in cardiac glutathione (GSH) level and catalase (CAT) enzyme activity which were significantly reversed by treatment with AP. Induction of cardiotoxicity by CFZ significantly increased caspase-3 enzyme activity which were reversed by treatment with AP. RT-PCR analysis revealed an increased mRNA expression of NF-κB, ERK and JNK which were reversed by treatment with AP in cardiac tissues. Western blot analysis revealed an increased expression of caspase-3 and NF-κB p65 and a decrease expression of inhibitory kappa B-alpha (Iκbα) with CFZ, which were reversed by treatment with AP. In conclusion, apremilast showed protective effect against CFZ-induced cardiotoxicity.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Corazón/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Miocardio/metabolismo , FN-kappa B/metabolismo , Oligopéptidos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Talidomida/análogos & derivados , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Animales , Cardiotoxicidad/prevención & control , Relación Dosis-Respuesta a Droga , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratas Wistar , Talidomida/farmacología
19.
Pharmacol Res ; 102: 1-11, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26361726

RESUMEN

Diosmin, a natural flavonoid glycoside present abundantly in the pericarp of various citrus fruits. Because of its anti-inflammatory and antioxidant properties, it can be used in many diseases. In this study, we investigated the possible protective mechanisms of the diosmin on LPS-induced lung injury through inhibition of T cell receptors, pro-inflammatory cytokines and NF-κB activation. Animals were pretreated with diosmin (50 and 100mg/kg, p.o.) for seven days prior to lipopolysaccharides (LPS) treatment. LPS administration increased neutrophils, monocytes, lymphocytes, total leukocyte count (TLC) and platelets which were decreased by diosmin. We observed that mice exposed to LPS showed increased malondialdehyde level and MPO activity whereas marked decrease in glutathione content. These changes were significantly reversed by treatment with diosmin in a dose dependent manner. Diosmin treatment showed a substantial reduction in T cell (CD4(+) and CD8(+)) receptors and pro-inflammatory (IL-2(+) and IL-17(+)) cytokines in whole blood. In addition, RT-PCR analysis revealed increased mRNA expression of IL-6, IL-17, TNF-α, and NF-κB in the LPS group, while reduced by treatment with diosmin. Western blot analysis confirmed the increased protein expression of IL-1ß, TNF-α and NF-κB p65 in the LPS group and treatment of animals with diosmin reversed these effects. The levels of cytoplasmic p-IκB-α and p-NF-κB p65 expression also were mitigated by diosmin. The histological examinations revealed protective effect of diosmin while LPS group aggravated lung injury. These results support the potential for diosmin to be investigated as a potential agent for the treatment of lung injury and inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Diosmina/metabolismo , Regulación hacia Abajo/fisiología , Regulación de la Expresión Génica/fisiología , Inflamación/metabolismo , FN-kappa B/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Animales , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Transducción de Señal/fisiología , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
J Thromb Thrombolysis ; 39(1): 79-88, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25106734

RESUMEN

Rivaroxaban is a novel, selective and potent oral direct factor Xa inhibitor, therapeutically indicated in the treatment of thromboembolic diseases. Like traditional anticoagulants, routine coagulation monitoring of rivaroxaban is not necessary, but important in some clinical circumstances. In this study, a sensitive UHPLC-MS/MS assay for rapid determination of rivaroxaban in human plasma was developed and validated. Rivaroxaban and its internal standard (IS) were extracted from plasma using acetonitrile as protein precipitating agent. An isocratic mobile phase of acetonitrile: 10 mM ammonium acetate (80:20, v/v) at a flow rate of 0.3 mL/min was used for the separation of rivaroxaban and IS. Both rivaroxaban and IS was eluted within 1 min with a total run time of 1.5 min only. Electrospray ionization source in positive mode was used for the detections of rivaroxaban and IS. Precursor to product ion transition of m/z 436.00 > 144.87 for rivaroxaban and m/z 411.18 > 191.07 for IS were used in multiple reaction monitoring mode. Developed assay was fully validated in terms of selectivity, linearity, accuracy, precision, recovery, matrix effects and stability using official guideline on bioanalytical method.


Asunto(s)
Inhibidores del Factor Xa , Morfolinas , Plasma , Tiofenos , Cromatografía Líquida de Alta Presión/métodos , Inhibidores del Factor Xa/análisis , Inhibidores del Factor Xa/farmacocinética , Humanos , Espectrometría de Masas/métodos , Morfolinas/análisis , Morfolinas/farmacocinética , Rivaroxabán , Tiofenos/análisis , Tiofenos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA