Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
New Phytol ; 241(2): 793-810, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37915139

RESUMEN

Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.


Asunto(s)
Medicago truncatula , Fijación del Nitrógeno , Fijación del Nitrógeno/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Cobre/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
New Phytol ; 239(6): 2113-2125, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37340839

RESUMEN

Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N2 into NH3 . In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.


Asunto(s)
Fabaceae , Rhizobium , Fijación del Nitrógeno , Simbiosis , Ecosistema , Fabaceae/microbiología , Nódulos de las Raíces de las Plantas/microbiología , Nitrógeno
3.
Plant Cell Environ ; 44(6): 1908-1920, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33797764

RESUMEN

Yellow Stripe-Like (YSL) proteins are a family of plant transporters that are typically involved in transition metal homeostasis. Three of the four YSL clades (I, II and IV) transport metals complexed with the non-proteinogenic amino acid nicotianamine or its derivatives. No such capability has been shown for any member of clade III, but the link between these YSLs and metal homeostasis could be masked by functional redundancy. We studied the role of the clade III YSL protein MtSYL7 in Medicago truncatula nodules. MtYSL7, which encodes a plasma membrane-bound protein, is mainly expressed in the pericycle and cortex cells of the root nodules. Yeast complementation assays revealed that MtSYL7 can transport short peptides. M. truncatula transposon insertion mutants with decreased expression of MtYSL7 had lower nitrogen fixation rates and showed reduced plant growth whether grown in symbiosis with rhizobia or not. YSL7 mutants accumulated more copper and iron in the nodules, which is likely to result from the increased expression of iron uptake and delivery genes in roots. Taken together, these data suggest that MtYSL7 plays an important role in the transition metal homeostasis of nodules and symbiotic nitrogen fixation.


Asunto(s)
Medicago truncatula/fisiología , Fijación del Nitrógeno/fisiología , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas de Plantas/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Transporte de Proteínas , Rhizobium , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
4.
New Phytol ; 228(1): 194-209, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32367515

RESUMEN

Iron is an essential cofactor for symbiotic nitrogen fixation, required by many of the enzymes involved, including signal transduction proteins, O2 homeostasis systems, and nitrogenase itself. Consequently, host plants have developed a transport network to deliver essential iron to nitrogen-fixing nodule cells. Ferroportin family members in model legume Medicago truncatula were identified and their expression was determined. Yeast complementation assays, immunolocalization, characterization of a tnt1 insertional mutant line, and synchrotron-based X-ray fluorescence assays were carried out in the nodule-specific M. truncatula ferroportin Medicago truncatula nodule-specific gene Ferroportin2 (MtFPN2) is an iron-efflux protein. MtFPN2 is located in intracellular membranes in the nodule vasculature and in inner nodule tissues, as well as in the symbiosome membranes in the interzone and early-fixation zone of the nodules. Loss-of-function of MtFPN2 alters iron distribution and speciation in nodules, reducing nitrogenase activity and biomass production. Using promoters with different tissular activity to drive MtFPN2 expression in MtFPN2 mutants, we determined that expression in the inner nodule tissues is sufficient to restore the phenotype, while confining MtFPN2 expression to the vasculature did not improve the mutant phenotype. These data indicate that MtFPN2 plays a primary role in iron delivery to nitrogen-fixing bacteroids in M. truncatula nodules.


Asunto(s)
Medicago truncatula , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fijación del Nitrógeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
5.
J Exp Bot ; 71(22): 7257-7269, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32841350

RESUMEN

Symbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living within the nodule cells, a process in which vascular transport is essential. As members of the Yellow Stripe-Like (YSL) family of metal transporters are involved in root to shoot transport, they should also be required for root to nodule metal delivery. The genome of the model legume Medicago truncatula encodes eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules and by cortical nodule cells. Reducing the expression level of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role for MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.


Asunto(s)
Arabidopsis , Medicago truncatula , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fijación del Nitrógeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
6.
Antonie Van Leeuwenhoek ; 113(5): 687-696, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31900709

RESUMEN

Hydrogen-uptake (Hup) activity is implicated in the mitigation of energy losses associated with the biological nitrogen fixation process, and has been related to productivity increases in some legume hosts. However, in common bean (Phaseolus vulgaris L.) the expression of hydrogenase is rare. In this study an 18-kb hup gene cluster from Rhizobium leguminosarum bv. viciae encoding a NiFe hydrogenase was successfully transferred to three common bean rhizobial strains lacking hydrogenase activity (Hup-) but symbiotically very effective and used in commercial inoculants in Brazil: one strain originally from Colombia (Rhizobium tropici CIAT 899), and two strains from Brazil (R. tropici H 12 and Rhizobium freirei PRF 81). The inclusion of NiCl2 in the nutrient solution did not increase hydrogenase activity, indicating that common bean plants allow efficient nickel provision for hydrogenase synthesis in the bacteroids. The symbiotic performance-evaluated by nodulation, plant growth, N accumulation and seed production-of wild-type and Hup+ derivative strains was compared in experiments performed with cultivar Carioca under greenhouse conditions, in sterile substrate and in non-sterile soil. Statistically significant increases in one or more parameters were observed for all three Hup+ derivatives when compared to the respective wild-type strain. Differences were found mainly with the Brazilian strains, reaching impressive increases in nodule efficiency and seed total N content. The results highlight the potential of using Rhizobium Hup+ strains for the design of more energy-efficient inoculants for the common bean crop.


Asunto(s)
Hidrogenasas/genética , Phaseolus , Plantas Modificadas Genéticamente , Rhizobium/genética , Proteínas Bacterianas/genética , Brasil , Genes Bacterianos , Hidrógeno/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Phaseolus/crecimiento & desarrollo , Phaseolus/metabolismo , Phaseolus/microbiología , Nódulos de las Raíces de las Plantas/genética , Simbiosis/genética
7.
Phytopathology ; 110(5): 969-972, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32096699

RESUMEN

Xylella fastidiosa is an economically important plant pathogenic bacterium of global importance associated, since 2013, with a devastating epidemic in olive trees in Italy. Since then, several outbreaks of this pathogen have been reported in other European member countries including Spain, France, and Portugal. In Spain, the three major subspecies (subsp. fastidiosa, multiplex, and pauca) of the bacterium have been detected in the Balearic Islands, but only subspecies multiplex in the mainland (Alicante). We present the first complete genome sequences of two Spanish strains: X. fastidiosa subsp. fastidiosa IVIA5235 from Mallorca and X. fastidiosa subsp. multiplex IVIA5901 from Alicante, using Oxford Nanopore and Illumina sequence reads, and two hybrid approaches for genome assembly. These completed genomes will provide a resource to better understand the biology of these X. fastidiosa strains.


Asunto(s)
Xylella , Europa (Continente) , Francia , Italia , Filogenia , Enfermedades de las Plantas , Análisis de Secuencia de ADN , España
8.
Mycorrhiza ; 30(6): 781-788, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32914374

RESUMEN

Arbuscular mycorrhizal fungi are critical participants in plant nutrition in natural ecosystems and in sustainable agriculture. A large proportion of the phosphorus, nitrogen, sulfur, and transition metal elements that the host plant requires are obtained from the soil by the fungal mycelium and released at the arbuscules in exchange for photosynthates. While many of the plant transporters responsible for obtaining macronutrients at the periarbuscular space have been characterized, the identities of those mediating transition metal uptake remain unknown. In this work, MtCOPT2 has been identified as the only member of the copper transporter family COPT in the model legume Medicago truncatula to be specifically expressed in mycorrhizal roots. Fusing a C-terminal GFP tag to MtCOPT2 expressed under its own promoter showed a distribution pattern that corresponds with arbuscule distribution in the roots. When expressed in tobacco leaves, MtCOPT2-GFP co-localizes with a plasma membrane marker. MtCOPT2 is intimately related to the rhizobial nodule-specific MtCOPT1, which is suggestive of a shared evolutionary lineage that links transition metal nutrition in the two main root endosymbioses in legumes.


Asunto(s)
Medicago truncatula , Proteínas de Transporte de Membrana , Micorrizas , Ecosistema , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Micorrizas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Simbiosis
9.
Plant Cell Environ ; 42(1): 310-320, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29940074

RESUMEN

Symbiotic nitrogen fixation in legume root nodules requires a steady supply of molybdenum for synthesis of the iron-molybdenum cofactor of nitrogenase. This nutrient has to be provided by the host plant from the soil, crossing several symplastically disconnected compartments through molybdate transporters, including members of the MOT1 family. Medicago truncatula Molybdate Transporter (MtMOT) 1.2 is a Medicago truncatula MOT1 family member located in the endodermal cells in roots and nodules. Immunolocalization of a tagged MtMOT1.2 indicates that it is associated to the plasma membrane and to intracellular membrane systems, where it would be transporting molybdate towards the cytosol, as indicated in yeast transport assays. Loss-of-function mot1.2-1 mutant showed reduced growth compared with wild-type plants when nitrogen fixation was required but not when nitrogen was provided as nitrate. While no effect on molybdenum-dependent nitrate reductase activity was observed, nitrogenase activity was severely affected, explaining the observed difference of growth depending on nitrogen source. This phenotype was the result of molybdate not reaching the nitrogen-fixing nodules, since genetic complementation with a wild-type MtMOT1.2 gene or molybdate-fortification of the nutrient solution, both restored wild-type levels of growth and nitrogenase activity. These results support a model in which MtMOT1.2 would mediate molybdate delivery by the vasculature into the nodules.


Asunto(s)
Proteínas de Transporte de Anión/fisiología , Medicago truncatula/metabolismo , Molibdeno/metabolismo , Proteínas de Plantas/fisiología , Nódulos de las Raíces de las Plantas/metabolismo , Proteínas de Transporte de Anión/metabolismo , Medicago truncatula/ultraestructura , Microscopía Confocal , Microscopía Electrónica , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/ultraestructura
10.
New Phytol ; 218(2): 696-709, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29349810

RESUMEN

Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Medicago truncatula/metabolismo , Fijación del Nitrógeno , Proteínas de Plantas/metabolismo , Simbiosis , Transporte Biológico/efectos de los fármacos , Proteínas de Transporte de Catión/genética , Diferenciación Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cobre/farmacología , Transportador de Cobre 1 , Complejo IV de Transporte de Electrones/metabolismo , Medicago truncatula/citología , Familia de Multigenes , Mutación/genética , Fijación del Nitrógeno/efectos de los fármacos , Nitrogenasa/metabolismo , Fenotipo , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Simbiosis/efectos de los fármacos
11.
Appl Environ Microbiol ; 83(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28062461

RESUMEN

The genetic diversity of bacterial populations nodulating Lupinus micranthus in five geographical sites from northern Tunisia was examined. Phylogenetic analyses of 50 isolates based on partial sequences of recA and gyrB grouped strains into seven clusters, five of which belong to the genus Bradyrhizobium (28 isolates), one to Phyllobacterium (2 isolates), and one, remarkably, to Microvirga (20 isolates). The largest Bradyrhizobium cluster (17 isolates) grouped with the B. lupini species, and the other five clusters were close to different recently defined Bradyrhizobium species. Isolates close to Microvirga were obtained from nodules of plants from four of the five sites sampled. We carried out an in-depth phylogenetic study with representatives of the seven clusters using sequences from housekeeping genes (rrs, recA, glnII, gyrB, and dnaK) and obtained consistent results. A phylogeny based on the sequence of the symbiotic gene nodC identified four groups, three formed by Bradyrhizobium isolates and one by the Microvirga and Phyllobacterium isolates. Symbiotic behaviors of the representative strains were tested, and some congruence between symbiovars and symbiotic performance was observed. These data indicate a remarkable diversity of L. micranthus root nodule symbionts in northern Tunisia, including strains from the Bradyrhizobiaceae, Methylobacteriaceae, and Phyllobacteriaceae families, in contrast with those of the rhizobial populations nodulating lupines in the Old World, including L. micranthus from other Mediterranean areas, which are nodulated mostly by Bradyrhizobium strains.IMPORTANCELupinus micranthus is a legume broadly distributed in the Mediterranean region and plays an important role in soil fertility and vegetation coverage by fixing nitrogen and solubilizing phosphate in semiarid areas. Direct sowing to extend the distribution of this indigenous legume can contribute to the prevention of soil erosion in pre-Saharan lands of Tunisia. However, rhizobial populations associated with L. micranthus are poorly understood. In this context, the diversity of endosymbionts of this legume was investigated. Most Lupinus species are nodulated by Bradyrhizobium strains. This work showed that about half of the isolates from northern Tunisian soils were in fact Bradyrhizobium symbionts, but the other half were found unexpectedly to be bacteria within the genera Microvirga and Phyllobacterium These unusual endosymbionts may have a great ecological relevance. Inoculation with the appropriate selected symbiotic bacterial partners will increase L. micranthus survival with consequent advantages for the environment in semiarid areas of Tunisia.


Asunto(s)
Bradyrhizobium/aislamiento & purificación , Lupinus/microbiología , Methylobacteriaceae/aislamiento & purificación , Phyllobacteriaceae/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Biodiversidad , Bradyrhizobium/clasificación , Bradyrhizobium/genética , Girasa de ADN/genética , ADN Bacteriano/genética , Genes Esenciales/genética , Methylobacteriaceae/clasificación , Methylobacteriaceae/genética , Phyllobacteriaceae/clasificación , Phyllobacteriaceae/genética , Filogenia , Nodulación de la Raíz de la Planta/fisiología , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Microbiología del Suelo , Simbiosis/fisiología , Túnez
12.
New Phytol ; 216(4): 1223-1235, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28805962

RESUMEN

Molybdenum, as a component of the iron-molybdenum cofactor of nitrogenase, is essential for symbiotic nitrogen fixation. This nutrient has to be provided by the host plant through molybdate transporters. Members of the molybdate transporter family Molybdate Transporter type 1 (MOT1) were identified in the model legume Medicago truncatula and their expression in nodules was determined. Yeast toxicity assays, confocal microscopy, and phenotypical characterization of a Transposable Element from Nicotiana tabacum (Tnt1) insertional mutant line were carried out in the one M. truncatula MOT1 family member specifically expressed in nodules. Among the five MOT1 members present in the M. truncatula genome, MtMOT1.3 is the only one uniquely expressed in nodules. MtMOT1.3 shows molybdate transport capabilities when expressed in yeast. Immunolocalization studies revealed that MtMOT1.3 is located in the plasma membrane of nodule cells. A mot1.3-1 knockout mutant showed impaired growth concomitant with a reduction of nitrogenase activity. This phenotype was rescued by increasing molybdate concentrations in the nutritive solution, or upon addition of an assimilable nitrogen source. Furthermore, mot1.3-1 plants transformed with a functional copy of MtMOT1.3 showed a wild-type-like phenotype. These data are consistent with a model in which MtMOT1.3 is responsible for introducing molybdate into nodule cells, which is later used to synthesize functional nitrogenase.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Medicago truncatula/metabolismo , Molibdeno/metabolismo , Nitrogenasa/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Proteínas de Plantas/metabolismo
13.
Plant Cell Environ ; 40(11): 2706-2719, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28732146

RESUMEN

Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone.


Asunto(s)
Medicago truncatula/enzimología , Medicago truncatula/microbiología , Proteínas de Plantas/metabolismo , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/enzimología , Zinc/metabolismo , Diferenciación Celular , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Medicago truncatula/genética , Modelos Biológicos , Fenotipo , Proteínas de Plantas/genética , Interferencia de ARN , Nódulos de las Raíces de las Plantas/genética , Fracciones Subcelulares/metabolismo
14.
Plant Physiol ; 168(1): 258-72, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25818701

RESUMEN

Iron is critical for symbiotic nitrogen fixation (SNF) as a key component of multiple ferroproteins involved in this biological process. In the model legume Medicago truncatula, iron is delivered by the vasculature to the infection/maturation zone (zone II) of the nodule, where it is released to the apoplast. From there, plasma membrane iron transporters move it into rhizobia-containing cells, where iron is used as the cofactor of multiple plant and rhizobial proteins (e.g. plant leghemoglobin and bacterial nitrogenase). MtNramp1 (Medtr3g088460) is the M. truncatula Natural Resistance-Associated Macrophage Protein family member, with the highest expression levels in roots and nodules. Immunolocalization studies indicate that MtNramp1 is mainly targeted to the plasma membrane. A loss-of-function nramp1 mutant exhibited reduced growth compared with the wild type under symbiotic conditions, but not when fertilized with mineral nitrogen. Nitrogenase activity was low in the mutant, whereas exogenous iron and expression of wild-type MtNramp1 in mutant nodules increased nitrogen fixation to normal levels. These data are consistent with a model in which MtNramp1 is the main transporter responsible for apoplastic iron uptake by rhizobia-infected cells in zone II.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Proteínas de Plantas/metabolismo , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Transporte Biológico/efectos de los fármacos , Proteínas de Transporte de Catión/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Hierro/farmacología , Manganeso/metabolismo , Medicago truncatula/genética , Modelos Biológicos , Familia de Multigenes , Mutagénesis Insercional/genética , Nitrogenasa/metabolismo , Fenotipo , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rhizobium/efectos de los fármacos , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Simbiosis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
15.
J Biol Chem ; 289(31): 21217-29, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24942742

RESUMEN

[NiFe] hydrogenases are key enzymes for the energy and redox metabolisms of different microorganisms. Synthesis of these metalloenzymes involves a complex series of biochemical reactions catalyzed by a plethora of accessory proteins, many of them required to synthesize and insert the unique NiFe(CN)2CO cofactor. HypC is an accessory protein conserved in all [NiFe] hydrogenase systems and involved in the synthesis and transfer of the Fe(CN)2CO cofactor precursor. Hydrogenase accessory proteins from bacteria-synthesizing hydrogenase in the presence of oxygen include HupK, a scaffolding protein with a moderate sequence similarity to the hydrogenase large subunit and proposed to participate as an intermediate chaperone in the synthesis of the NiFe cofactor. The endosymbiotic bacterium Rhizobium leguminosarum contains a single hydrogenase system that can be expressed under two different physiological conditions: free-living microaerobic cells (∼ 12 µm O2) and bacteroids from legume nodules (∼ 10-100 nm O2). We have used bioinformatic tools to model HupK structure and interaction of this protein with HypC. Site-directed mutagenesis at positions predicted as critical by the structural analysis have allowed the identification of HupK and HypC residues relevant for the maturation of hydrogenase. Mutant proteins altered in some of these residues show a different phenotype depending on the physiological condition tested. Modeling of HypC also predicts the existence of a stable HypC dimer whose presence was also demonstrated by immunoblot analysis. This study widens our understanding on the mechanisms for metalloenzyme biosynthesis in the presence of oxygen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrogenasas/metabolismo , Oxígeno/metabolismo , Rhizobium leguminosarum/enzimología , Proteínas Bacterianas/química , Secuencia de Bases , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Modelos Moleculares , Unión Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Mol Plant Microbe Interact ; 28(3): 310-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25514682

RESUMEN

Rhizobium leguminosarum bv. viciae establishes root nodule symbioses with several legume genera. Although most isolates are equally effective in establishing symbioses with all host genera, previous evidence suggests that hosts select specific rhizobial genotypes among those present in the soil. We have used population genomics to further investigate this observation. Pisum sativum, Lens culinaris, Vicia sativa, and V. faba plants were used to trap rhizobia from a well-characterized soil, and pooled genomic DNA from 100 isolates from each plant were sequenced. Sequence reads were aligned to the R. leguminosarum bv. viciae 3841 reference genome. High overall conservation of sequences was observed in all subpopulations, although several multigenic regions were absent from the soil population. A large fraction (16 to 22%) of sequence reads could not be recruited to the reference genome, suggesting that they represent sequences specific to that particular soil population. Although highly conserved, the 16S to 23S ribosomal RNA gene region presented single nucleotide polymorphisms (SNP) regarding the reference genome, but no striking differences could be found among plant-selected subpopulations. Plant-specific SNP patterns were, however, clearly observed within the nod gene cluster, supporting the existence of a plant preference for specific rhizobial genotypes. This was also shown after genome-wide analysis of SNP patterns.


Asunto(s)
Fabaceae/microbiología , Metagenómica , Rhizobium leguminosarum/genética , Simbiosis/genética , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Genotipo , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Raíces de Plantas/microbiología , Polimorfismo de Nucleótido Simple , Rhizobium leguminosarum/fisiología , Nódulos de las Raíces de las Plantas , Plantones/microbiología , Análisis de Secuencia de ADN , Microbiología del Suelo , Especificidad de la Especie
17.
Int J Syst Evol Microbiol ; 64(Pt 6): 2072-2078, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24664579

RESUMEN

A group of strains isolated from root nodules of Phaseolus lunatus (Lima bean) in Peru were characterized by genotypic, genomic and phenotypic methods. All strains possessed identical 16S rRNA gene sequences that were 99.9% identical to that of Bradyrhizobium lablabi CCBAU 23086(T). Despite having identical 16S rRNA gene sequences, the Phaseolus lunatus strains could be divided into two clades by sequence analysis of recA, atpD, glnII, dnaK and gyrB genes. The genome sequence of a representative of each clade was obtained and compared to the genomes of closely related species of the genus Bradyrhizobium. Average nucleotide identity values below the species circumscription threshold were obtained when comparing the two clades to each other (88.6%) and with all type strains of the genus Bradyrhizobium (≤92.9%). Phenotypes distinguishing both clades from all described and closely related species of the genus Bradyrhizobium were found. On the basis of the results obtained, two novel species, Bradyrhizobium paxllaeri sp. nov. (type strain LMTR 21(T) = DSM 18454(T) = HAMBI 2911(T)) and Bradyrhizobium icense sp. nov. (type strain LMTR 13(T) = HAMBI 3584(T) = CECT 8509(T) = CNPSo 2583(T)), are proposed to accommodate the uncovered clades of Phaseolus lunatus bradyrhizobia. These species share highly related but distinct nifH and nodC symbiosis genes.


Asunto(s)
Bradyrhizobium/clasificación , Phaseolus/microbiología , Filogenia , Nódulos de las Raíces de las Plantas/metabolismo , Técnicas de Tipificación Bacteriana , Composición de Base , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Datos de Secuencia Molecular , Fijación del Nitrógeno , Hibridación de Ácido Nucleico , Perú , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis
18.
Antonie Van Leeuwenhoek ; 105(6): 1121-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24756908

RESUMEN

Fifty-one rhizobial strains isolated from root nodules of Cytisus villosus growing in Northeastern Algeria were characterized by genomic and phenotypic analyses. Isolates were grouped into sixteen different patterns by PCR-RAPD. The phylogenetic status of one representative isolate from each pattern was examined by multilocus sequence analyses of four housekeeping genes (16S rRNA, glnII, recA, and atpD) and one symbiotic gene (nodC). Analysis of 16S rRNA gene sequences showed that all the isolates belonged to the genus Bradyrhizobium. Phylogenetic analyses based on individual or concatenated genes glnII, recA, and atpD indicated that strains cluster in three distinct groups. Ten out of the sixteen strains grouped together with Bradyrhizobium japonicum, while a second group of four clustered with Bradyrhizobium canariense. The third group, represented by isolates CTS8 and CTS57, differed significantly from all other bradyrhizobia known to nodulate members of the Genisteae tribe. In contrast with core genes, sequences of the nodC symbiotic gene from all the examined strains form a homogeneous group within the genistearum symbiovar of Bradyrhizobium. All strains tested nodulated Lupinus angustifolius, Lupinus luteus, and Spartium junceum but not Glycine max. From these results, it is concluded that C. villosus CTS8 and CTS57 strains represent a new lineage within the Bradyrhizobium genus.


Asunto(s)
Bradyrhizobium/clasificación , Bradyrhizobium/aislamiento & purificación , Cytisus/microbiología , Cytisus/fisiología , Nodulación de la Raíz de la Planta , Argelia , Proteínas Bacterianas/genética , Bradyrhizobium/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes Bacterianos , Lupinus/microbiología , Lupinus/fisiología , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Spartium/microbiología , Spartium/fisiología
19.
Bioresour Bioprocess ; 11(1): 28, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38647905

RESUMEN

The endophytic fungus Aspergillus sp. SPH2 was isolated from the stems of the endemic plant Bethencourtia palmensis and its extracts were found to have strong fungicidal effects against Botrytis cinerea and ixodicidal effects against Hyalomma lusitanicum at different fermentation times. In this study, the fungus was grown using three different culture media and two methodologies, Microparticulate Enhancement Cultivation (MPEC) and Semi-Solid-State Fermentation (Semi-SSF), to increase the production of secondary metabolites during submerged fermentation. The addition of an inert support to the culture medium (Semi-SSF) resulted in a significant increase in the extract production. However, when talcum powder was added to different culture media, unexpected results were observed, with a decrease in the production of the biocompounds of interest. Metabolomic analyses showed that the production of aspergillic, neoaspergillic, and neohydroxyaspergillic acids peaked in the first few days of fermentation, with notable differences observed among the methodologies and culture media. Mellein production was particularly affected by the addition of an inert support to the culture medium. These results highlight the importance of surface properties and morphology of spores and mycelia during fermentation by this fungal species.

20.
Mol Phylogenet Evol ; 67(3): 626-30, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23499616

RESUMEN

Nod factor modifications mediated by nodZ and nolL gene products (fucosylation and acetylation of fucose residues, respectively) were probably later acquisitions in the nodulation process. Novel phylogenetic analyses suggest that nodZ and nolL genes were transferred from Bradyrhizobium to other nodule bacteria. These bradyrhizobial genes are highly diverse while rhizobial, sinorhizobial and mesorhizobial nodZ and nolL genes are represented by few branches among those from bradyrhizobia. These genes in novel rhizobial backgrounds may have favored efficient nodulation in legume hosts commonly associated with Bradyrhizobium strains.


Asunto(s)
Bradyrhizobium/clasificación , Bradyrhizobium/genética , Genes Bacterianos , Filogenia , Rhizobium/clasificación , Rhizobium/genética , Variación Genética , Datos de Secuencia Molecular , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA