Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769254

RESUMEN

The covalent functionalization of synthetic peptides allows the modification of different biomaterials (metallic, polymeric, and ceramic), which are enriched with biologically active sequences to guide cell behavior. Recently, this strategy has also been applied to decellularized biological matrices. In this study, the covalent anchorage of a synthetic peptide (REDV) to a pericardial matrix decellularized via Schiff base is realized starting from concentrated peptide solutions (10-4 M and 10-3 M). The use of a labeled peptide demonstrated that as the concentration of the working solution increased, the surface density of the anchored peptide increased as well. These data are essential to pinpointing the concentration window in which the peptide promotes the desired cellular activity. The matrices were extensively characterized by Water Contact Angle (WCA) analysis, Differential Scanning Calorimetry (DSC) analysis, geometric feature evaluation, biomechanical tests, and preliminary in vitro bioassays.


Asunto(s)
Péptidos , Pericardio , Materiales Biocompatibles
2.
Polymers (Basel) ; 15(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36850103

RESUMEN

Right ventricle outflow tract obstruction (RVOTO) is a congenital pathological condition that contributes to about 15% of congenital heart diseases. In most cases, the replacement of the right ventricle outflow in pediatric age requires subsequent pulmonary valve replacement in adulthood. The aim of this study was to investigate the extracellular matrix scaffold obtained by decellularization of the porcine pulmonary valve using a new detergent (Tergitol) instead of Triton X-100. The decellularized scaffold was evaluated for the integrity of its extracellular matrix (ECM) structure by testing for its biochemical and mechanical properties, and the cytotoxicity/cytocompatibility of decellularized tissue was assessed using bone marrow-derived mesenchymal stem cells. We concluded that Tergitol could remove the nuclear material efficiently while preserving the structural proteins of the matrix, but without an efficient removal of the alpha-gal antigenic epitope. Therefore, Tergitol can be used as an alternative detergent to replace the Triton X-100.

3.
J Funct Biomater ; 14(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36976065

RESUMEN

Conduit substitutes are increasingly in demand for cardiovascular and urological applications. In cases of bladder cancer, radical cystectomy is the preferred technique: after removing the bladder, a urinary diversion has to be created using autologous bowel, but several complications are associated with intestinal resection. Thus, alternative urinary substitutes are required to avoid autologous intestinal use, preventing complications and facilitating surgical procedures. In the present paper, we are proposing the exploitation of the decellularized porcine descending aorta as a novel and original conduit substitute. After being decellularized with the use of two alternative detergents (Tergitol and Ecosurf) and sterilized, the porcine descending aorta has been investigated to assess its permeability to detergents through methylene blue dye penetration analysis and to study its composition and structure by means of histomorphometric analyses, including DNA quantification, histology, two-photon microscopy, and hydroxyproline quantification. Biomechanical tests and cytocompatibility assays with human mesenchymal stem cells have been also performed. The results obtained demonstrated that the decellularized porcine descending aorta preserves its major features to be further evaluated as a candidate material for urological applications, even though further studies have to be carried out to demonstrate its suitability for the specific application, by performing in vivo tests in the animal model.

4.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35890127

RESUMEN

Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons. Motor neurons generated from human induced pluripotent stem cells (hiPSCs) were characterized at the molecular level and by electrophysiology. mRNA levels of AhR target genes, CYP1A1 and CYP1B1 (cytochromes P450 1A1/1B1), and AhR signaling components were monitored in hiPSCs and in differentiated neurons following treatment with AhR ligands, 2,3,7,8,-tetrachlodibenzo-p-dioxin (TCDD), L-kynurenine (L-Kyn), and kynurenic acid (KA), by RT-qPCR. Changes in AhR cellular localization and CYP1A1 activity in neurons treated with AhR ligands were also assessed. The neurons we generated express motor neuron-specific markers and are functional. Transcript levels of CYP1B1, AhR nuclear translocators (ARNT1 and ARNT2) and the AhR repressor (AhRR) change with neuronal differentiation, being significantly higher in neurons than hiPSCs. In contrast, CYP1A1 and AhR transcript levels are slightly lower in neurons than in hiPSCs. The response to TCDD treatment differs in hiPSCs and neurons, with only the latter showing significant CYP1A1 up-regulation. In contrast, TCDD slightly up-regulates CYP1B1 mRNA in hiPSCs, but downregulates it in neurons. Comparison of the effects of different AhR ligands on AhR and some of its target genes in neurons shows that L-Kyn and KA, but not TCDD, regulate AhR expression and differently affect CYP1A1 and CYP1B1 expression. Finally, although TCDD does not significantly affect AhR transcript levels, it induces AhR protein translocation to the nucleus and increases CYP1A1 activity. This is in contrast to L-Kyn and KA, which either do not affect or reduce, respectively, CYP1A1 activity. Expression of components of the AhR signaling pathway are regulated with neuronal differentiation and are differently affected by TCDD, suggesting that pluripotent stem cells might be less sensitive to this toxin than neurons. Crucially, AhR signaling is affected differently by TCDD and other AhR ligands in human motor neurons, suggesting that they can provide a valuable tool for assessing the impact of environmental pollutants.

5.
Biomimetics (Basel) ; 7(3)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35997424

RESUMEN

Human and animal pericardia are among the most widely exploited materials suitable to repair damaged tissues in the cardiovascular surgery context. Autologous, xenogeneic (chemically treated) and homologous pericardia are largely utilized, but they do exhibit some crucial drawbacks. Any tissue treated with glutaraldehyde is known to be prone to calcification in vivo, lacks regeneration potential, has limited durability, and can result in cytotoxicity. Moreover, autologous tissues have limited availability. Decellularized biological tissues represent a promising alternative: decellularization removes cellular and nuclear components from native tissues and makes them suitable for repopulation by autologous cells upon implantation into the body. The present work aims to assess the effects of a new detergent, i.e., Tergitol, for decellularizing bovine and porcine pericardia. The decellularization procedure successfully removed cells, while preserving the histoarchitecture of the extracellular matrix. No cytotoxic effect was observed. Therefore, decellularized pericardia showed potential to be used as scaffold for cardiovascular tissue regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA