Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Physiol ; 600(4): 869-883, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34387376

RESUMEN

KEY POINTS: Adipocyte enlargement is a key feature of obesity and associated with insulin resistance and metabolic disease The cause and consequences of adipocyte enlargement have remained hard to study in vitro due to a lack of human cell models with representative morphology This paper provides an easily set up spheroid culture method, HUVAS (human unilocular vascularized adipocyte spheroids), for the differentiation and culturing of human adipocytes with a more unilocular morphology We show that providing adipocyte progenitors with a vascular differentiation niche is key for achieving in vitro differentiated adipocytes with large lipid droplets Lipid treatment of the HUVAS spheroids can further adipocyte enlargement and induce cellular dysfunction, mimicking the in vivo effects of weight gain The model will allow a wider research community to perform mechanistic studies of the factors impacting on human adipocyte differentiation and growth, increasing our understanding of how obesity develops and why it has such detrimental consequences on whole body metabolism ABSTRACT: The rise in obesity prevalence has created an urgent need for new and improved methods to study human adipocytes and the pathogenic effects of weight gain in vitro. Despite the proven advantage of culturing adipocyte progenitors as 3D structures, the majority of studies continue to use traditional 2D cultures which result in small, multilocular adipocytes with poor representability. We hypothesized that providing differentiating pre-adipocytes with a vascular growth niche would mimic in vivo adipogenesis and improve the differentiation into unilocular adipocytes. Here we present HUVAS (human unilocular vascularized adipocyte spheroids), a simple, easily applicable culture protocol that allows for the differentiation of human adipocytes with a more unilocular morphology and larger lipid droplets than previous protocols. Moreover, we offer a protocol for inducing adipocyte enlargement in vitro, resulting in larger lipid droplets and development of several key features of adipocyte dysfunction, including altered adipokine secretion, impaired lipolysis and insulin resistance. Taken together, our HUVAS model offers an improved culture system for studying the cellular and molecular mechanisms causing metabolic dysfunction and inflammation in human adipose tissue during weight gain.


Asunto(s)
Adipocitos , Tejido Adiposo , Adipocitos/metabolismo , Adipogénesis , Tejido Adiposo/metabolismo , Diferenciación Celular , Humanos , Aumento de Peso
2.
PLoS Med ; 19(1): e1003859, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085228

RESUMEN

BACKGROUND: Numerous epidemiological studies have investigated the role of blood lipids in prostate cancer (PCa) risk, though findings remain inconclusive to date. The ongoing research has mainly involved observational studies, which are often prone to confounding. This study aimed to identify the relationship between genetically predicted blood lipid concentrations and PCa. METHODS AND FINDINGS: Data for low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides (TG), apolipoprotein A (apoA) and B (apoB), lipoprotein A (Lp(a)), and PCa were acquired from genome-wide association studies in UK Biobank and the PRACTICAL consortium, respectively. We used a two-sample summary-level Mendelian randomisation (MR) approach with both univariable and multivariable (MVMR) models and utilised a variety of robust methods and sensitivity analyses to assess the possibility of MR assumptions violation. No association was observed between genetically predicted concentrations of HDL, TG, apoA and apoB, and PCa risk. Genetically predicted LDL concentration was positively associated with total PCa in the univariable analysis, but adjustment for HDL, TG, and Lp(a) led to a null association. Genetically predicted concentration of Lp(a) was associated with higher total PCa risk in the univariable (ORweighted median per standard deviation (SD) = 1.091; 95% CI 1.028 to 1.157; P = 0.004) and MVMR analyses after adjustment for the other lipid traits (ORIVW per SD = 1.068; 95% CI 1.005 to 1.134; P = 0.034). Genetically predicted Lp(a) was also associated with advanced (MVMR ORIVW per SD = 1.078; 95% CI 0.999 to 1.163; P = 0.055) and early age onset PCa (MVMR ORIVW per SD = 1.150; 95% CI 1.015,1.303; P = 0.028). Although multiple estimation methods were utilised to minimise the effect of pleiotropy, the presence of any unmeasured pleiotropy cannot be excluded and may limit our findings. CONCLUSIONS: We observed that genetically predicted Lp(a) concentrations were associated with an increased PCa risk. Future studies are required to understand the underlying biological pathways of this finding, as it may inform PCa prevention through Lp(a)-lowering strategies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Lípidos/sangre , Neoplasias de la Próstata/epidemiología , Apolipoproteínas/sangre , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Humanos , Lipoproteína(a)/sangre , Masculino , Análisis de la Aleatorización Mendeliana , Reino Unido
3.
Obes Rev ; 23(4): e13403, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34866318

RESUMEN

The prevalence of obesity and its associated pathologies continue to increase, which has led to a renewed interest in our major weight-regulating organ, the white adipose tissue. It has become clear that its development, expansion, and physiological function depend on proper crosstalk between each of its cellular constituents, with a central role for the vascular endothelium lining the blood vessels. Although first considered a mere barrier, the endothelium has emerged as a dynamic unit modulating many critical adipose tissue functions. It not only oversees the uptake of all nutrients to be stored in the adipocytes but also provides an important growth niche for adipocyte progenitors and regulates the expandability of the tissue during overfeeding and obesity. In this review, we describe the reciprocal relationship between endothelial cells, adipocytes, and obesity. We present recent studies that support an important role for endothelial cells as central mediators of many of the physiological and pathological functions of the adipose tissue and highlight several unknown aspects of adipose tissue vascular biology. This new perspective could present exciting opportunities to develop new therapeutic approaches against obesity-related pathologies and is thus of great interest in our increasingly obese society.


Asunto(s)
Tejido Adiposo , Células Endoteliales , Adipocitos/fisiología , Tejido Adiposo/patología , Tejido Adiposo Blanco/patología , Células Endoteliales/patología , Humanos , Obesidad
4.
Nat Commun ; 11(1): 42, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31896748

RESUMEN

DNA damage and metabolic disorders are intimately linked with premature disease onset but the underlying mechanisms remain poorly understood. Here, we show that persistent DNA damage accumulation in tissue-infiltrating macrophages carrying an ERCC1-XPF DNA repair defect (Er1F/-) triggers Golgi dispersal, dilation of endoplasmic reticulum, autophagy and exosome biogenesis leading to the secretion of extracellular vesicles (EVs) in vivo and ex vivo. Macrophage-derived EVs accumulate in Er1F/- animal sera and are secreted in macrophage media after DNA damage. The Er1F/- EV cargo is taken up by recipient cells leading to an increase in insulin-independent glucose transporter levels, enhanced cellular glucose uptake, higher cellular oxygen consumption rate and greater tolerance to glucose challenge in mice. We find that high glucose in EV-targeted cells triggers pro-inflammatory stimuli via mTOR activation. This, in turn, establishes chronic inflammation and tissue pathology in mice with important ramifications for DNA repair-deficient, progeroid syndromes and aging.


Asunto(s)
Daño del ADN/fisiología , Exosomas/metabolismo , Macrófagos/citología , Animales , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Exosomas/patología , Regulación de la Expresión Génica , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Masculino , Ratones Transgénicos , Neuropéptidos/genética , Neuropéptidos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
5.
Nat Cell Biol ; 19(5): 421-432, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28368372

RESUMEN

Inborn defects in DNA repair are associated with complex developmental disorders whose causal mechanisms are poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the nucleotide excision repair (NER) structure-specific endonuclease ERCC1-XPF complex interacts with the insulator binding protein CTCF, the cohesin subunits SMC1A and SMC3 and with MBD2; the factors co-localize with ATRX at the promoters and control regions (ICRs) of imprinted genes during postnatal hepatic development. Loss of Ercc1 or exposure to MMC triggers the localization of CTCF to heterochromatin, the dissociation of the CTCF-cohesin complex and ATRX from promoters and ICRs, altered histone marks and the aberrant developmental expression of imprinted genes without altering DNA methylation. We propose that ERCC1-XPF cooperates with CTCF and cohesin to facilitate the developmental silencing of imprinted genes and that persistent DNA damage triggers chromatin changes that affect gene expression programs associated with NER disorders.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Silenciador del Gen , Impresión Genómica , Proteínas Represoras/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteínas Cromosómicas no Histona/genética , Técnicas de Cocultivo , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Fibroblastos/enzimología , Regulación del Desarrollo de la Expresión Génica , Genotipo , Histonas/metabolismo , Hígado/enzimología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteína Nuclear Ligada al Cromosoma X , Cohesinas
6.
Front Genet ; 7: 187, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27826317

RESUMEN

To lessen the "wear and tear" of existence, cells have evolved mechanisms that continuously sense DNA lesions, repair DNA damage and restore the compromised genome back to its native form. Besides genome maintenance pathways, multicellular organisms may also employ adaptive and innate immune mechanisms to guard themselves against bacteria or viruses. Recent evidence points to reciprocal interactions between DNA repair, DNA damage responses and aspects of immunity; both self-maintenance and defense responses share a battery of common players and signaling pathways aimed at safeguarding our bodily functions over time. In the short-term, this functional interplay would allow injured cells to restore damaged DNA templates or communicate their compromised state to the microenvironment. In the long-term, however, it may result in the (premature) onset of age-related degeneration, including cancer. Here, we discuss the beneficial and unrewarding outcomes of DNA damage-driven inflammation in the context of tissue-specific pathology and disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA