Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Biol ; 33(4): 755-763.e3, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36702128

RESUMEN

Reptiles display great diversity in color and pattern, yet much of what we know about vertebrate coloration comes from classic model species such as the mouse and zebrafish.1,2,3,4 Captive-bred ball pythons (Python regius) exhibit a remarkable degree of color and pattern variation. Despite the wide range of Mendelian color phenotypes available in the pet trade, ball pythons remain an overlooked species in pigmentation research. Here, we investigate the genetic basis of the recessive piebald phenotype, a pattern defect characterized by patches of unpigmented skin (leucoderma). We performed whole-genome sequencing and used a case-control approach to discover a nonsense mutation in the gene encoding the transcription factor tfec, implicating this gene in the leucodermic patches in ball pythons. We functionally validated tfec in a lizard model (Anolis sagrei) using the gene editing CRISPR/Cas9 system and TEM imaging of skin. Our findings show that reading frame mutations in tfec affect coloration and lead to a loss of iridophores in Anolis, indicating that tfec is required for chromatophore development. This study highlights the value of captive-bred ball pythons as a model species for accelerating discoveries on the genetic basis of vertebrate coloration.


Asunto(s)
Cromatóforos , Lagartos , Piebaldismo , Animales , Ratones , Pez Cebra , Lagartos/genética , Pigmentación/genética , Proteínas de Pez Cebra , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice
2.
J Neurotrauma ; 40(1-2): 112-124, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35979888

RESUMEN

Traumatic brain injuries (TBIs) affect more than 10 million patients annually worldwide, causing long-term cognitive and psychosocial impairments. Frontal lobe TBIs commonly impair executive function, but laboratory models typically focus primarily on spatial learning and declarative memory. We implemented a multi-modal approach for clinically relevant cognitive-behavioral assessments of frontal lobe function in rats with TBI and assessed treatment benefits of the serotonin-norepinephrine reuptake inhibitor, milnacipran (MLN). Two attentional set-shifting tasks (AST) evaluated cognitive flexibility via the rats' ability to locate food-based rewards by learning, unlearning, and relearning sequential rule sets with shifting salient cues. Adult male rats reached stable pre-injury operant AST (oAST) performance in 3-4 weeks, then were isoflurane-anesthetized, subjected to a unilateral frontal lobe controlled cortical impact (2.4 mm depth, 4 m/sec velocity) or Sham injury, and randomized to treatment conditions. Milnacipran (30 mg/kg/day) or vehicle (VEH; 10% ethanol in saline) was administered intraperitoneally via implanted osmotic minipumps (continuous infusions post-surgery, 60 µL/h). Rats had a 10-day recovery post-TBI/Sham before performing light/location-based oAST for 10 days and, subsequently, odor/media-based digging AST (dAST) on the last test day (26-27 days post-injury) before sacrifice. Both AST tests revealed significant deficits in TBI+VEH rats, seen as elevated total trials and errors (p < 0.05), which generally normalized in MLN-treated rats (p < 0.05). This first simultaneous dual AST assessment demonstrates oAST and dAST are sufficiently sensitive and robust to detect subtle attentional and cognitive flexibility executive impairments after frontal lobe TBI in rats. Chronic MLN administration shows promise for attenuation of post-TBI executive function deficits, thus meriting further investigation.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Función Ejecutiva , Animales , Masculino , Ratas , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Modelos Animales de Enfermedad , Lóbulo Frontal , Aprendizaje por Laberinto , Milnaciprán , Ratas Sprague-Dawley
3.
Brain Res ; 1808: 148336, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36948353

RESUMEN

Impaired attention is central to the cognitive deficits associated with long-term sequelae for many traumatic brain injury (TBI) survivors. Assessing complex sustained attention post-TBI is clinically-relevant and may provide reliable avenues towards developing therapeutic and rehabilitation targets in both males and females. We hypothesized that rats subjected to a moderate TBI will exhibit attentional deficits seen as reduced accuracy and increased distractibility in an operant 3-choice serial reaction time task (3-CSRT), designed as an analogue of the clinical continuous performance test. Upon reaching baseline of 70% accuracy at the 300 ms cue, adult male and female Sprague-Dawley rats were subjected to a controlled cortical impact (2.8 mm deformation at 4 m/s) or sham injury over the right parietal cortex. After two weeks of recovery, they were retested on the 3-CSRT for ten days. Dependent measures include percent accuracy (overall and for each of the three cue ports), percent omissions, as well as latency to instrumental poke and retrieve reward. Results demonstrate that both males and females displayed reduced percent accuracy and increased omissions when re-tested post-TBI on 3-CSRT compared to Sham rats and to their own pre-insult baseline (p's < 0.05). Performance accuracy was impaired consistently throughout the ten days of post-surgery re-testing, suggesting pronounced and long-lasting dysfunction in sustained attention processes. Deficits were specifically more pronounced when the cue was pseudorandomly presented in the left-side cue port (p < 0.05), mirroring clinical hemispatial neglect. These data demonstrate significant and persistent complex attention impairments in both sexes after TBI, rendering identifying efficient therapies for cognitive recovery as pivotal.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Trastornos del Conocimiento , Ratas , Masculino , Femenino , Animales , Tiempo de Reacción , Ratas Sprague-Dawley , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Atención
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA