Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 17(11): e3000528, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31751331

RESUMEN

The immune system comprises a complex network of specialized cells that protects against infection, eliminates cancerous cells, and regulates tissue repair, thus serving a critical role in homeostasis, health span, and life span. The subterranean-dwelling naked mole-rat (NM-R; Heterocephalus glaber) exhibits prolonged life span relative to its body size, is unusually cancer resistant, and manifests few physiological or molecular changes with advancing age. We therefore hypothesized that the immune system of NM-Rs evolved unique features that confer enhanced cancer immunosurveillance and prevent the age-associated decline in homeostasis. Using single-cell RNA-sequencing (scRNA-seq) we mapped the immune system of the NM-R and compared it to that of the short-lived, cancer-prone mouse. In contrast to the mouse, we find that the NM-R immune system is characterized by a high myeloid-to-lymphoid cell ratio that includes a novel, lipopolysaccharide (LPS)-responsive, granulocyte cell subset. Surprisingly, we also find that NM-Rs lack canonical natural killer (NK) cells. Our comparative genomics analyses support this finding, showing that the NM-R genome lacks an expanded gene family that controls NK cell function in several other species. Furthermore, we reconstructed the evolutionary history that likely led to this genomic state. The NM-R thus challenges our current understanding of mammalian immunity, favoring an atypical, myeloid-biased mode of innate immunosurveillance, which may contribute to its remarkable health span.


Asunto(s)
Ratas Topo/genética , Ratas Topo/inmunología , Animales , Evolución Biológica , Biología Computacional/métodos , Genoma , Genómica/métodos , Longevidad/genética , Mamíferos/inmunología , Ratones/inmunología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma/genética
2.
G3 (Bethesda) ; 10(9): 2911-2925, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32631951

RESUMEN

In recent years, improved sequencing technology and computational tools have made de novo genome assembly more accessible. Many approaches, however, generate either an unphased or only partially resolved representation of a diploid genome, in which polymorphisms are detected but not assigned to one or the other of the homologous chromosomes. Yet chromosomal phase information is invaluable for the understanding of phenotypic trait inheritance in the cases of compound heterozygosity, allele-specific expression or cis-acting variants. Here we use a combination of tools and sequencing technologies to generate a de novo diploid assembly of the human primary cell line WI-38. First, data from PacBio single molecule sequencing and Bionano Genomics optical mapping were combined to generate an unphased assembly. Next, 10x Genomics linked reads were combined with the hybrid assembly to generate a partially phased assembly. Lastly, we developed and optimized methods to use short-read (Illumina) sequencing of flow cytometry-sorted metaphase chromosomes to provide phase information. The final genome assembly was almost fully (94%) phased with the addition of approximately 2.5-fold coverage of Illumina data from the sequenced metaphase chromosomes. The diploid nature of the final de novo genome assembly improved the resolution of structural variants between the WI-38 genome and the human reference genome. The phased WI-38 sequence data are available for browsing and download at wi38.research.calicolabs.com. Our work shows that assembling a completely phased diploid genome de novo from the DNA of a single individual is now readily achievable.


Asunto(s)
Diploidia , Genoma Humano , ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN
3.
Behav Genet ; 39(3): 306-20, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19242787

RESUMEN

Thermotolerance involves more than life or death. Investigating the complexity of this trait will aid identification of its genetic contributors. We examined variation in thermally stressed walking behavior and performance in natural Drosophila melanogaster strains and strains mutant for the heat shock protein Hsp70, to determine which aspects of locomotion are affected by heat shock and genotype. We developed software for the large-scale capture, analysis, and visualization of locomotion, and determined: (1) Heat shock and thermal pretreatment significantly and differentially impact fly locomotor behavior and performance. (2) Stressed locomotion traits vary extensively among natural strains. (3) Interactions among treatments, strains, and traits are substantial and often counterintuitive. (4) Hsp70 overexpressing flies are faster and more basally thermoprotected in performance than Hsp70 null flies, but null flies are more unidirectional. (5) Natural variation in most stressed locomotion traits exceeds that caused by Hsp70 mutation, reveals uncoupling between thermoprotection of behavior and performance, and suggests significant genetic variation for trait-specific modifiers of thermotolerance.


Asunto(s)
Variación Genética/genética , Proteínas HSP70 de Choque Térmico/genética , Locomoción/genética , Estrés Fisiológico/genética , Sensación Térmica/genética , Animales , Animales Modificados Genéticamente , Análisis Mutacional de ADN , Drosophila melanogaster , Femenino , Expresión Génica/genética , Genotipo , Habituación Psicofisiológica/genética , Mutación INDEL , Procesamiento de Imagen Asistido por Computador , Masculino , Tiempo de Reacción/genética , Programas Informáticos , Análisis de Supervivencia , Grabación de Cinta de Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA