Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(3): 411-428, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37877370

RESUMEN

Symmetric α-amino acid derivatives can be used for the synthesis of intermolecularly linked peptides such as dimer-type peptides, and modified peptides in which two amino acids are intramolecularly linked. They are also synthetic intermediates for the total synthesis of natural products and functional molecules. These symmetric amino acid derivatives must be prepared based on organic synthesis. It is necessary to develop an optimal synthetic strategy for constructing the target symmetric amino acid derivative. In this review, we will introduce strategies for synthesizing symmetric amino acid derivatives. Additionally, selected applications of these amino acids in the life sciences will be described.


Asunto(s)
Aminas , Aminoácidos , Aminoácidos/química , Péptidos/química
2.
J Nat Prod ; 87(6): 1666-1671, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38840407

RESUMEN

Hypoxia-inducible factor 1 (HIF-1) signaling is upregulated in an oxygen-dependent manner under hypoxic conditions. Activation of HIF-1 signaling increases the expression of HIF-1 target genes involved in cell survival, proliferation, and angiogenesis. Therefore, compounds that activate HIF-1 signaling have therapeutic potential in ischemic diseases. Screening for compounds that activate HIF-1 activity identified a microbial metabolite, teleocidin B-4, a PKC activator. Other PKC activators, such as TPA and 10-Me-Aplog-1, also activated HIF-1 activity. PKC activators induced HIF-1α protein accumulation through PKCα/mTORC activation. These results suggest that PKC activators without tumor-promoting activity have potential as therapeutic agents via HIF-1 target gene activation.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Proteína Quinasa C-alfa , Transducción de Señal , Humanos , Transducción de Señal/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína Quinasa C-alfa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38936828

RESUMEN

We synthesized a phenolic hydroxy group-bearing version (1) of a simplified analog of aplysiatoxin comprising a carvone-based conformation-controlling unit. Thereafter, we evaluated its antiproliferative activity against human cancer cell lines and its binding affinity to protein kinase C (PKC) isozymes. The antiproliferative activity and PKC-binding ability increased with the introduction of the phenolic hydroxy group. The results of molecular dynamics simulations and subsequent relative binding free-energy calculations conducted using an alchemical transformation procedure showed that the phenolic hydroxy group in 1 could form a hydrogen bond with a phospholipid and the PKC. The former hydrogen bonding formation facilitated the partitioning of the compound from water to the phospholipid membrane and the latter compensated for the loss of hydrogen bond with the phospholipid upon binding to the PKC. This information may facilitate the development of rational design methods for PKC ligands with additional hydrogen bonding groups.

4.
J Am Chem Soc ; 145(27): 14587-14591, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37326375

RESUMEN

Lancilactone C is a tricyclic triterpenoid that inhibits human immunodeficiency virus (HIV) replication in H9 lymphocytes with no cytotoxicity. Its tricyclic skeleton comprises trans-dimethylbicyclo[4.3.0]nonane and 7-isopropylenecyclohepta-1,3,5-triene. The latter unique structure, in which all carbon atoms are sp2 hybridized, is not found in other triterpenoids and needs to be verified synthetically. Herein, we have accomplished the first total synthesis of lancilactone C (proposed structure) by developing a new domino [4 + 3] cycloaddition reaction involving oxidation, Diels-Alder reaction, elimination, and electrocyclization. We have also revised the structure based on the total synthesis of lancilactone C according to its plausible biosynthetic pathway.


Asunto(s)
Triterpenos , Humanos , Estructura Molecular , Oxidación-Reducción , Ciclización , Reacción de Cicloadición , Triterpenos/farmacología
5.
Biochem Biophys Res Commun ; 675: 19-25, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37437496

RESUMEN

Naturally occurring protein kinase C (PKC) activators such as phorbol esters, teleocidins, and aplysiatoxins, have the potential to become anti-cancer agents, since they are anti-proliferative against specific cancer cell lines in vitro. However, their potent tumor-promoting and proinflammatory activities have hampered their clinical uses. Recently, we developed 10-methyl-aplog-1 (1), a simplified analog of tumor-promoting debromoaplysiatoxin (DAT), which retained anti-proliferative activity comparable to DAT, but induced neither tumorigenesis nor inflammation on mouse skin. Our previous study suggested that PKCα and δ were involved in the cell line-selective anti-proliferative activity of 1, but the downstream signaling of PKC isozymes remained unknown. In this study, we confirmed that 1 inhibited the growth of three aplog-sensitive cancer cell lines (NCI-H460, HCC-2998, and HBC-4) without severe side effects in mice xenograft models. In addition, in vitro analysis using A549, one of the aplog-sensitive cell lines in vitro, revealed that PKCα induced PP2A-mediated attenuation of the Akt/S6 signaling axis. Since S6 inhibition in A549 was reported to result in G1 arrest, this pathway could be involved in the PKCα-dependent anti-proliferative activity of 1.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Proteína Quinasa C-alfa/metabolismo , Relación Estructura-Actividad , Proliferación Celular , Transducción de Señal , Proteína Quinasa C/metabolismo , Línea Celular Tumoral
6.
Biol Pharm Bull ; 46(2): 359-363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724966

RESUMEN

Amyloid ß (Aß) plays a key role in the pathology of Alzheimer's disease (AD) and is toxic owing to its ability to aggregate into oligomers and fibrils. Aß has high aggregative ability and potent toxicity due to the "toxic turn" at positions 22 and 23. Furthermore, APP knock-in mice producing E22P-Aß with the toxic turn exhibited AD-related phenotypes such as cognitive impairment, Aß plaque accumulation, and tau hyperphosphorylation. In these mice, it is suggested that the activation of neuroinflammation and dysregulation of hypoxia-inducible factor (HIF) expression in the hippocampus contribute to the pathogenesis of AD-related phenotype. However, it remains unclear which cells are responsible for the dysregulation of HIF expression and the neuroinflammation which was induced by E22P-Aß with the toxic turn. Here, we investigated the effects of chronic treatment with E22P-Aß42 and lipopolysaccharides (LPS) on the inflammatory response in BV-2 microglia. Chronic treatment with E22P-Aß42 and LPS increased nitric oxide production and the expression of interleukin-6 (IL-6), whereas it reduced the expression of HIF-1α and HIF-3α in BV-2 microglia. The reduction of HIF-1α caused by E22P-Aß42 and LPS was milder than that caused by LPS. Furthermore, chronic treatment with E22P-Aß42 and LPS increased the nuclear translocation of nuclear factor-kappaB (NF-κB). E22P-Aß42 could enhance the inflammatory response of microglia with abnormal HIF signaling and contribute to the progression of AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Microglía , Lipopolisacáridos/toxicidad , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/metabolismo , Hipoxia
7.
Biol Pharm Bull ; 46(11): 1576-1582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37914360

RESUMEN

Chinese artichoke tuber (Stachys sieboldii Miq.) is used as an herbal medicine as well as edible food. This study examined the effect of the Chinese artichoke extracts on the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway that induces the expression of antioxidant enzymes to explore its novel characteristics. Hot water extracts exhibited relatively high ARE activity. ARE activity was observed in two fractions when the hot water extracts were separated in the presence of trifluoroacetic acid using HPLC. Conversely, the highly active fraction disappeared when the hot water extracts were separated in the absence of trifluoroacetic acid. These results indicate that acidic degradation produces active ingredients. The structural analysis of the two active fractions identified harpagide, which is an iridoid glucoside, and harpagogenin. In vitro experiments revealed that harpagide was converted into harpagogenin under acidic conditions and that harpagogenin, but not harpagide, had potent ARE activity. Therefore, this study identified harpagogenin, which is an acid hydrolysate of harpagide, as an ARE activator and suggests that Nrf2-ARE pathway activation by Chinese artichoke contributes to the antioxidative effect.


Asunto(s)
Stachys , Elementos de Respuesta Antioxidante , Antioxidantes/farmacología , Factor 2 Relacionado con NF-E2 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Stachys/química , Ácido Trifluoroacético , Agua
8.
Biosci Biotechnol Biochem ; 87(12): 1453-1461, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37682524

RESUMEN

10-Methyl-aplog-1 (10MA-1), a simplified analog of aplysiatoxin, exhibits a high binding affinity for protein kinase C (PKC) isozymes with minimal tumor-promoting and pro-inflammatory activities. A recent study suggests that 10MA-1 could reactivate latent human immunodeficiency virus (HIV) in vitro for HIV eradication strategy. However, further in vivo studies were abandoned by a dose limit caused by the minimal water solubility of 10MA-1. To overcome this problem, we synthesized a phosphate ester of 10MA-1, 18-O-phospho-10-methyl-aplog-1 (phos-10MA-1), to improve water solubility for in vivo studies. The solubility, PKC binding affinity, and biological activity of phos-10MA-1 were examined in vitro, and the biological activity was comparable with 10MA-1. The pharmacokinetic studies in vivo were also examined, which suggest that further optimization for improving metabolic stability is required in the future.


Asunto(s)
Infecciones por VIH , VIH-1 , Profármacos , Humanos , Profármacos/farmacología , Fosfatos , Ésteres/farmacología , Agua , Linfocitos T CD4-Positivos
9.
Molecules ; 28(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37241936

RESUMEN

BACKGROUND: Cathepsin K, which is involved in bone resorption, is a good target for treating osteoporosis, but no clinically approved medicine has been developed. Recently, allosteric inhibitors with high specificity and few side effects have been attracting attention for use in new medicines. METHODS: Cathepsin K inhibitors were isolated from the methanol extract of Chamaecrista nomame (Leguminosae) using cathepsin K inhibition activity-assisted multi-step chromatography. Standard kinetic analysis was employed to examine the mechanism of cathepsin K inhibition when an isolated inhibitor and its derivative were used. The allosteric binding of these cathepsin K inhibitors was supported by a docking study using AutoDock vina. Combinations of allosteric cathepsin K inhibitors expected to bind to different allosteric sites were examined by means of cathepsin K inhibition assay. RESULTS: Two types of cathepsin K inhibitors were identified in the methanol extract of Chamaecrista nomame. One type consisted of cassiaoccidentalin B and torachrysone 8-ß-gentiobioside, and inhibited both cathepsin K and B with similar inhibitory potential, while the other type of inhibitor consisted of pheophytin a, and inhibited cathepsin K but not cathepsin B, suggesting that pheophytin a binds to an allosteric site of cathepsin K. Kinetic analysis of inhibitory activity suggested that pheophytin a and its derivative, pheophorbide b, bind allosterically to cathepsin K. This possibility was supported by a docking study on cathepsin K. The cathepsin K inhibitory activity of pheophytin a and pheophorbide b was enhanced by combining them with the allosteric inhibitors NSC 13345 and NSC94914, which bind to other allosteric sites on cathepsin K. CONCLUSIONS: Different allosteric inhibitors that bind to different sites in combination, as shown in this study, may be useful for designing new allosteric inhibitory drugs with high specificity and few side effects.


Asunto(s)
Resorción Ósea , Metanol , Humanos , Catepsina K/metabolismo , Sitio Alostérico , Cinética , Catepsinas/metabolismo
10.
Biochem Biophys Res Commun ; 621: 162-167, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-35839743

RESUMEN

Amyloid ß-protein (Aß) oligomers are involved in the early stages of Alzheimer's disease (AD) and antibodies against these toxic oligomers could be useful for accurate diagnosis of AD. We identified the toxic conformer of Aß42 with a turn at positions 22/23, which has a propensity to form toxic oligomers. The antibody 24B3, developed by immunization of a toxic conformer surrogate E22P-Aß9-35 in mice, was found to be useful for AD diagnosis using human cerebrospinal fluid (CSF). However, it is not known how 24B3 recognizes the toxic conformation of wild-type Aß in CSF. Here, we report the crystal structure of 24B3 Fab complexed with E22P-Aß11-34, whose residues 16-26 were observed in electron densities, suggesting that the residues comprising the toxic turn at positions 22/23 were recognized by 24B3. Since 24B3 bound only to Aß42 aggregates, several conformationally restricted analogs of Aß42 with an intramolecular disulfide bond to mimic the conformation of toxic Aß42 aggregates were screened by enzyme immunoassay. As a result, only F19C,A30homoC-SS-Aß42 (1) bound significantly to 24B3. These data provide a structural basis for its low affinity to the Aß42 monomer and selectivity for its aggregate form.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos Monoclonales , Humanos , Ratones , Conformación Molecular , Fragmentos de Péptidos/química
11.
Chembiochem ; 23(8): e202200029, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35165998

RESUMEN

Amyloid ß (Aß) oligomers play a critical role in the pathology of Alzheimer's disease. Recently, we reported that a conformation-restricted Aß42 with an intramolecular disulfide bond through cysteine residues at positions 17/28 formed stable oligomers with potent cytotoxicity. To further optimize this compound as a toxic conformer model, we synthesized three analogues with a combination of cysteine and homocysteine at positions 17/28. The analogues with Cys-Cys, Cys-homoCys, or homoCys-Cys, but not the homoCys-homoCys analogue, exhibited potent cytotoxicity against SH-SY5Y and THP-1 cells even at 10 nM. In contrast, the cytotoxicity of conformation-restricted analogues at positions 16/29 or 18/27 was significantly weaker than that of wild-type Aß42. Furthermore, thioflavin-T assay, non-denaturing gel electrophoresis, and morphological studies suggested that the majority of these conformation-restricted analogues exists in an oligomeric state in cell culture medium, indicating that the toxic conformation of Aß42, rather than the oligomeric state, is essential to induce cytotoxicity.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/patología , Amiloide/química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Cisteína , Disulfuros/química , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/toxicidad
12.
Bioorg Med Chem Lett ; 61: 128613, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35176471

RESUMEN

Aggregation of amyloid ß42 (Aß42) is one of the hallmarks of Alzheimer's disease (AD). Inhibition of Aß42 aggregation is thus a promising approach for AD therapy. Kampo medicine has been widely used to combat dementias such as AD. Crude drug known as Shoyaku is an ingredient of Kampo that could have potential as a natural source of novel drugs. However, given that a mixture of compounds, rather than singular compounds, could contribute to the biological functions of crude drug, there are very limited studies on the structure and mechanism of each constituent in crude drug which may have anti-Aß42 aggregation properties. Herein we provide an efficient method, using LC-MS combined with principal component analysis (PCA), to search for activity-dependent compounds that inhibit Aß42 aggregation from 46 crude drug extracts originating from 18 plants. Only 5 extracts (Kakou, Kayou, Gusetsu, Rensu, and Renbou) from lotus demonstrated differentially inhibitory activities depending on the part of the plant from which they are derived (e.g. petiole, leaf, root node, stamen, and receptacle, respectively). To compare the anti-aggregative properties of compounds of active crude drug with those of inactive crude drug, these extracts were subjected to LC-MS measurement, followed by PCA. From 12 candidate compounds identified from the analysis, glucuronized and glucosidized quercetin, as well as 6 flavonoids (datiscetin, kaempferol, morin, robinetin, quercetin, and myricitrin), including catechol or flatness moiety suppressed Aß42 aggregation, whereas curcumol, a sesquiterpene, did not. In conclusion, this study offers a new activity-differential methodology to identify bioactive natural products in crude drugs that inhibit Aß42 aggregation and that could be applied to future AD therapies.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Medicamentos Herbarios Chinos/farmacología , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Análisis de Componente Principal , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Humanos , Espectrometría de Masas , Medicina Kampo , Estructura Molecular , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales/química , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad
13.
Bioorg Med Chem ; 73: 116988, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113282

RESUMEN

A simplified analog (3) of aplysiatoxin was synthesized. Compound 3 has only one tetrahydropyran ring at positions 3-7, the A-ring of the spiroketal moiety, which is the conformation-controlling unit for the macrolactone ring. Nuclear magnetic resonance (NMR) analysis and density functional theory (DFT) calculations indicated that 3 existed as an equilibrium mixture of two conformers arising from inversion of the chair conformation of the 2,6-trans-tetrahydropyran ring. The des-B-ring analog 3 binds protein kinase C isozymes and exhibits antiproliferative activity toward human cancer cell lines, comparable to 18-deoxy-aplog-1 with a spiroketal moiety.


Asunto(s)
Antineoplásicos , Isoenzimas , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Furanos , Humanos , Isoenzimas/metabolismo , Toxinas de Lyngbya , Proteína Quinasa C/metabolismo , Compuestos de Espiro , Relación Estructura-Actividad
14.
J Nat Prod ; 85(2): 384-390, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35057611

RESUMEN

Diterpenoid pyrones are a type of mainly fungal meroterpenoid metabolite consisting of a diterpene connected to a pyrone, some of which show potent bioactivity. Through genome mining and heterologous expression, nine new diterpenoid pyrones, shearones A-I (1-9), were discovered from the fungus Eupenicillium shearii IFM 42152, and their biosynthetic enzyme activities were revealed. Some of these heterologously biosynthesized diterpenoid pyrones exhibited moderate antiaggregative ability against amyloid ß42 in vitro.


Asunto(s)
Diterpenos , Pironas , Diterpenos/metabolismo , Diterpenos/farmacología , Penicillium , Pironas/farmacología , Biología Sintética
15.
Biosci Biotechnol Biochem ; 86(8): 1013-1023, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35648459

RESUMEN

Simplified analogs of aplysiatoxin (ATX) such as 10-Me-aplog-1 exhibit potent antiproliferative activity toward human cancer cell lines by activating protein kinase C (PKC). However, the synthesis of 10-Me-aplog-1 involved a 23-step longest linear sequence (LLS). Therefore, we have been working toward the development of a more synthetically accessible analog of ATX. In this study, we designed a new analog of ATX wherein a cyclic ketal moiety derived from (R)-(-)-carvone replaced the spiroketal moiety in 18-deoxy-aplog-1. The new analog's synthesis proceeded in an 8-step LLS. Although the configuration at position 3 of the cyclic ketal in the (R)-(-)-carvone-based analog was opposite to those of ATX and 18-deoxy-aplog-1, the antiproliferative activity toward human cancer cell lines of the carvone-based analog was comparable with that of 18-deoxy-aplog-1. The obtained results indicate the potential of the carvone-based analog as a basis for discovering PKC-targeting molecules requiring a decreased number of synthetic steps.


Asunto(s)
Antineoplásicos , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Monoterpenos Ciclohexánicos , Humanos , Toxinas de Lyngbya , Proteína Quinasa C/metabolismo , Relación Estructura-Actividad
16.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362046

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that requires further pathological elucidation to establish effective treatment strategies. We previously showed that amyloid ß (Aß) toxic conformer with a turn at positions 22-23 is essential for forming highly toxic oligomers. In the present study, we evaluated phenotypic changes with aging in AD model AppNL-P-F/NL-P-F (NL-P-F) mice with Swedish mutation (NL), Iberian mutation (F), and mutation (P) overproducing E22P-Aß, a mimic of toxic conformer utilizing the knock-in technique. Furthermore, the role of the toxic conformer in AD pathology was investigated. NL-P-F mice produced soluble toxic conformers from an early age. They showed impaired synaptic plasticity, glial cell activation, and cognitive decline, followed by the accumulation of Aß plaques and tau hyperphosphorylation. In addition, the protein expression of hypoxia-inducible factor (HIF)-1α was increased, and gene expression of HIF-3α was decreased in NL-P-F mice. HIF dysregulation due to the production of soluble toxic conformers may be involved in AD pathology in NL-P-F mice. This study could reveal the role of a highly toxic Aß on AD pathogenesis, thereby contributing to the development of a novel therapeutic strategy targeting the toxic conformer.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Factor 1 Inducible por Hipoxia , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Ratones Transgénicos , Fenotipo , Placa Amiloide/metabolismo , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo
17.
J Biol Chem ; 295(15): 4870-4880, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32127399

RESUMEN

Oligomers of ß-amyloid 42 (Aß42), rather than fibrils, drive the pathogenesis of Alzheimer's disease (AD). In particular, toxic oligomeric species called protofibrils (PFs) have attracted significant attention. Herein, we report RNA aptamers with higher affinity toward PFs derived from a toxic Aß42 dimer than toward fibrils produced from WT Aß42 or from a toxic, conformationally constrained Aß42 variant, E22P-Aß42. We obtained these RNA aptamers by using the preincubated dimer model of E22P-Aß42, which dimerized via a linker located at Val-40, as the target of in vitro selection. This dimer formed PFs during incubation. Several physicochemical characteristics of an identified aptamer, E22P-AbD43, suggested that preferential affinity of this aptamer toward PFs is due to its higher affinity for the toxic dimer unit (KD = 20 ± 6.0 nm) of Aß42 than for less-toxic Aß40 aggregates. Comparison of CD data from the full-length and random regions of E22P-AbD43 suggested that the preferential binding of E22P-AbD43 toward the dimer might be related to the formation of a G-quadruplex structure. E22P-AbD43 significantly inhibited the nucleation phase of the dimer and its associated neurotoxicity in SH-SY5Y human neuroblastoma cells. Of note, E22P-AbD43 also significantly protected against the neurotoxicity of WT Aß42 and E22P-Aß42. Furthermore, in an AD mouse model, E22P-AbD43 preferentially recognized diffuse aggregates, which likely originated from PFs or higher-order oligomers with curvilinear structures, compared with senile plaques formed from fibrils. We conclude that the E22P-AbD43 aptamer is a promising research and diagnostic tool for further studies of AD etiology.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Aptámeros de Nucleótidos/metabolismo , Modelos Animales de Enfermedad , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Placa Amiloide/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Humanos , Inmunohistoquímica , Ratones , Placa Amiloide/genética , Placa Amiloide/metabolismo
18.
Biosci Biotechnol Biochem ; 85(1): 168-180, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33577665

RESUMEN

10-Methyl-aplog-1 (1), a simplified analog of debromoaplysiatoxin, exhibits a high binding affinity for protein kinase C (PKC) isozymes and potent antiproliferative activity against several cancer cells with few adverse effects. A recent study has suggested that its phenol group in the side chain is involved in hydrogen bonding and CH/π interactions with the binding cleft-forming loops in the PKCδ-C1B domain. To clarify the effects of the side chain length on these interactions, four analogs of 1 with various lengths of side chains (2-5) were prepared. The maximal PKC binding affinity and antiproliferative activity were observed in 1. Remarkably, the introduction of a bromine atom into the phenol group of 2 increased not only these activities but also proinflammatory activity. These results indicated that 1 has the optimal side chain length as an anticancer seed. This conclusion was supported by docking simulations of 1-5 to the PKCδ-C1B domain.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Toxinas de Lyngbya/química , Toxinas de Lyngbya/farmacología , Proteína Quinasa C-delta/metabolismo , Antineoplásicos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Inflamación/inducido químicamente , Toxinas de Lyngbya/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Proteína Quinasa C-delta/química , Relación Estructura-Actividad
19.
Biosci Biotechnol Biochem ; 85(6): 1371-1382, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33851985

RESUMEN

Oscillatoxins (OTXs) and aplysiatoxins are biosynthetically related polyketides produced by marine cyanobacteria. We previously developed a synthetic route to phenolic O-methyl analogs of OTX-D and 30-methyl-OTX-D during collective synthesis of these natural products. According to our synthetic strategy, we achieved total synthesis of OTX-D, 30-methyl-OTX-D, OTX-E, and OTX-F by deprotecting the O-methyl group in an earlier intermediate, and determined their biological activities. Although OTX-D and 30-methyl-OTX-D have been reported to show antileukemic activity against L1210 cell line, we found that their cytotoxicity in vitro against this cell line is relatively weak (IC50: 29-52 µm). In contrast, OTX-F demonstrated cell line-selective antiproliferative activity against DMS-114 lung cancer cells, which implies that OTXs target as yet unknown target molecules as part of this unique activity.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Toxinas Bacterianas/síntesis química , Toxinas Bacterianas/farmacología , Antineoplásicos/química , Toxinas Bacterianas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Humanos
20.
Angew Chem Int Ed Engl ; 60(43): 23106-23111, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34423896

RESUMEN

We report the first total synthesis of shagenes A and B, which are tricyclic terpenoids containing a cis-substituted cyclopropane, via ring-closing metathesis of an enamide and Ir-catalyzed double-bond isomerization of an alkylidenecyclopropane. Chemo- and diastereoselectivity in the distorted cis-substituted structures were controlled by the alkylidenecyclopropane reactivity and using the ketone functionality as a remote directing group for the Ir catalyst, respectively. The total synthesis suggested the absolute configuration of shagenes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA