Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 124(8): 5119-5166, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38619540

RESUMEN

Highly efficient coelectrolysis of CO2/H2O into syngas (a mixture of CO/H2), and subsequent syngas conversion to fuels and value-added chemicals, is one of the most promising alternatives to reach the corner of zero carbon strategy and renewable electricity storage. This research reviews the current state-of-the-art advancements in the coelectrolysis of CO2/H2O in solid oxide electrolyzer cells (SOECs) to produce the important syngas intermediate. The overviews of the latest research on the operating principles and thermodynamic and kinetic models are included for both oxygen-ion- and proton-conducting SOECs. The advanced materials that have recently been developed for both types of SOECs are summarized. It later elucidates the necessity and possibility of regulating the syngas ratios (H2:CO) via changing the operating conditions, including temperature, inlet gas composition, flow rate, applied voltage or current, and pressure. In addition, the sustainability and widespread application of SOEC technology for the conversion of syngas is highlighted. Finally, the challenges and the future research directions in this field are addressed. This review will appeal to scientists working on renewable-energy-conversion technologies, CO2 utilization, and SOEC applications. The implementation of the technologies introduced in this review offers solutions to climate change and renewable-power-storage problems.

2.
Small ; 20(11): e2308867, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37899296

RESUMEN

Perovskites are an important class of oxygen evolution reaction (OER) catalysts due to highly tunable compositions and adaptable characteristics. However, perovskite-based catalysts can have limited atom utilization efficiency due to large particle size, resulting in low mass activity. Herein, Cobalt nanoparticles are exsolved from La0.2+2x Ca0.7-2x Ti1-x Cox O3 perovskite and applied in OER. Upon reduction in the 5% H2 /N2 atmosphere at 800 °C for 2 h, the Co exsolved perovskite catalyst (R-LCTCo0.11) exhibits optimal OER performance. The mass activity of R-LCTCo0.11 reaches ≈1700 mA mg-1 at an overpotential of 450 mV, which is 17 times and 3 times higher than that of LCTCo0.11 (97 mA mg-1 ) and R-Mix (560 mA mg-1 ) catalysts respectively, surpassing the benchmark catalyst RuO2 (42.7 mA mg-1 of oxide at η = 470 mV). Electrochemical impedance spectroscopy (EIS) data reveals that R-LCTCo0.11 has the lowest charge transfer resistance (Rct  = 58 Ω), demonstrating the highest catalytic and kinetic activity for OER. Furthermore, this catalyst shows high stability during an accelerated durability test of 10 h electrolysis and 1000 cycles cyclic voltammetry (CV). This work demonstrates that nanoparticle exsolution from a doped perovskite is an effective strategy for improving the atom utilization efficiency in OER.

3.
Small ; 19(1): e2204682, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36372544

RESUMEN

Active bi-metallic nanoparticles are of key importance in catalysis and renewable energy. Here, the in situ formation of bi-metallic nanoparticles is investigated by exsolution on 200 nm diameter perovskite fibers. The B-site co-doped perovskite fibers display a high degree of exsolution, decorated with NiCo or Ni3 Fe bi-metallic nanoparticles with average diameter about 29 and 35 nm, respectively. The perovskite fibers are utilized as cathode materials in pure CO2 electrolysis cells due to their redox stability in the CO/CO2 atmosphere. After in situ electrochemical switching, the nanoparticles exsolved from the perovskite fiber demonstrate an enhanced performance in pure CO2 electrolysis. At 900 °C, the current density of solid oxide electrolysis cell (SOEC) with 200 µm YSZ electrolyte supported NiFe doped perovskite fiber anode reaches 0.75 Acm-2 at 1.6 V superior to the NiCo doped perovskite fiber anode (about 1.5 times) in pure CO2 . According to DFT calculations (PBE-D3 level) the superior CO2 conversion on NiFe compared to NiCo bi-metallic species is related to an enhanced driving force for C-O cleavage under formation of CO chemisorbed on the nanoparticle and a reduced binding energy of CO required to release this product.

4.
Faraday Discuss ; 243(0): 38-54, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37415462

RESUMEN

Nitrogen-hydrogen based alkali and alkaline earth metal compounds have recently received a substantial amount of attention as co-catalysts for heterogeneous mild condition ammonia synthesis (MCAS). The incorporation of these materials has been shown to result in positive reaction orders with respect to H2, solving the issue of hydrogen poisoning, e.g., the occupation of the majority of transition metal (TM) active sites by H-adatoms due to the significantly faster kinetics of H2 dissociation as compared to N2. The mechanism that underlies this is thought to be the incorporation (sinking) of H-adatoms from the surface of TMs to the bulk of the N-H phases. Thus, the slower kinetics of N2 dissociation no longer inhibit ammonia synthesis, and improvements in the kinetics dissociation for TM can be realised without consideration for which specific gases are affected (e.g., the circumventing of scaling relations). The ability to transport H-adatoms from the surface of TM is therefore of fundamental importance to the properties of the N-H co-catalyst implying that the conductivity of these species towards H and N ions, and NHx species, is of utmost importance. As such, we investigate two N-H systems that can be prepared by reacting the respective hydrides with nitrogen resulting in nitride-hydride and imide forms for Ca and Ba, respectively. These have both been previously shown to promote ammonia synthesis and here we investigate their conductive properties, and discuss these systems in the context of activity and stability of the total system with specific focus on the rise of secondary anion species, and the presence of barium in the system.

5.
Faraday Discuss ; 243(0): 296-306, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37157953

RESUMEN

Electrochemical and catalytic conversion to and from ammonia is strongly enhanced by appropriate choice of hydrogen conducting electrolyte or substrate. Here we explore both protonic and hydride ionic conductors in relation to ammonia conversions. Protonic conductors tend to require too high a temperature to achieve sufficient hydrogen flux for ammonia synthesis as thermal decomposition competes strongly. Conversely protonic conductors are well suited to direct ammonia fuel cell use. Hydride ions can be very mobile and are strongly reducing. Alkaline hydride lattices can exhibit facile H and N mobility and exchange and offer a very promising basis for ammonia conversion and synthesis.

6.
J Magn Reson Imaging ; 56(5): 1355-1369, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35319148

RESUMEN

BACKGROUND: The relationship of tissue chemistry to breast density and cancer risk has not been documented despite breast density being a known risk factor. PURPOSE: To investigate whether distinct chemical profiles associated with breast density and cancer risk are identified in healthy breast tissue using in vivo two-dimensional correlated spectroscopy (2D COSY). STUDY TYPE: Prospective. POPULATION: One-hundred-seven participants including 55 at low risk and 52 at high risk of developing breast cancer. FIELD STRENGTH/SEQUENCE: 3 T/ axial/ T1, T2, 2D COSY. ASSESSMENT: Two radiologists defined breast density on T2. Interobserver variability assessed. Peak volumes normalized to methylene at (1.30, 1.30) ppm as internal shift reference. STATISTICAL TESTS: Chi-squared/Mann-Whitney/Kappa statistics/Kruskal Wallis/pairwise analyses. Significance level 0.05. RESULTS: Ten percentage were fatty breasts, 39% scattered fibroglandular, 35% heterogeneously dense, and 16% extremely dense. Interobserver variability was excellent (kappa = 0.817). Sixty percentage (64/107) were premenopausal. Four distinct tissue chemistry categories were identified: low-density (LD)/premenopausal, high-density (HD)/premenopausal, LD/postmenopausal, and HD/postmenopausal. Compared to LD, HD breast chemistry showed significant increases of cholesterol (235%) and lipid unsaturation (33%). In the low-risk category, postmenopausal women with dense breasts recorded the largest significant changes including cholesterol methyl 540%, lipid unsaturation 207%, glutamine/glutamate 900%, and choline/phosphocholine 800%. In the high-risk cohort, premenopausal women with HD recorded a more active chemical profile with significant increases in choline/phosphocholine 1100%, taurine/glucose 550% and cholesterol sterol 250%. DATA CONCLUSION: Four distinct chemical profiles were identified in healthy breast tissue based on breast density and menopausal status in participants at low and high risk. Gradual increase in neutral lipid content and metabolites was noted in both risk groups across categories in different order. In low risk, the HD postmenopausal category exhibited the highest metabolic activity, while women at high risk exhibited the highest lipid content and metabolic activity in the HD premenopausal category. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 3.


Asunto(s)
Densidad de la Mama , Neoplasias de la Mama , Neoplasias de la Mama/diagnóstico por imagen , Colina , Femenino , Glucosa , Glutamatos , Glutamina , Humanos , Lípidos , Mamografía , Fosforilcolina , Estudios Prospectivos , Factores de Riesgo , Esteroles , Taurina
7.
Nature ; 537(7621): 528-531, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27548878

RESUMEN

Solid oxide cells (SOCs) can operate with high efficiency in two ways-as fuel cells, oxidizing a fuel to produce electricity, and as electrolysis cells, electrolysing water to produce hydrogen and oxygen gases. Ideally, SOCs should perform well, be durable and be inexpensive, but there are often competitive tensions, meaning that, for example, performance is achieved at the expense of durability. SOCs consist of porous electrodes-the fuel and air electrodes-separated by a dense electrolyte. In terms of the electrodes, the greatest challenge is to deliver high, long-lasting electrocatalytic activity while ensuring cost- and time-efficient manufacture. This has typically been achieved through lengthy and intricate ex situ procedures. These often require dedicated precursors and equipment; moreover, although the degradation of such electrodes associated with their reversible operation can be mitigated, they are susceptible to many other forms of degradation. An alternative is to grow appropriate electrode nanoarchitectures under operationally relevant conditions, for example, via redox exsolution. Here we describe the growth of a finely dispersed array of anchored metal nanoparticles on an oxide electrode through electrochemical poling of a SOC at 2 volts for a few seconds. These electrode structures perform well as both fuel cells and electrolysis cells (for example, at 900 °C they deliver 2 watts per square centimetre of power in humidified hydrogen gas, and a current of 2.75 amps per square centimetre at 1.3 volts in 50% water/nitrogen gas). The nanostructures and corresponding electrochemical activity do not degrade in 150 hours of testing. These results not only prove that in operando methods can yield emergent nanomaterials, which in turn deliver exceptional performance, but also offer proof of concept that electrolysis and fuel cells can be unified in a single, high-performance, versatile and easily manufactured device. This opens up the possibility of simple, almost instantaneous production of highly active nanostructures for reinvigorating SOCs during operation.

8.
Nat Mater ; 19(7): 752-757, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32123332

RESUMEN

Oxide ion and proton conductors, which exhibit high conductivity at intermediate temperature, are necessary to improve the performance of ceramic fuel cells. The crystal structure plays a pivotal role in defining the ionic conduction properties, and the discovery of new materials is a challenging research focus. Here, we show that the undoped hexagonal perovskite Ba7Nb4MoO20 supports pure ionic conduction with high proton and oxide ion conductivity at 510 °C (the bulk conductivity is 4.0 mS cm-1), and hence is an exceptional candidate for application as a dual-ion solid electrolyte in a ceramic fuel cell that will combine the advantages of both oxide ion and proton-conducting electrolytes. Ba7Nb4MoO20 also showcases excellent chemical and electrical stability. Hexagonal perovskites form an important new family of materials for obtaining novel ionic conductors with potential applications in a range of energy-related technologies.

9.
J Am Soc Nephrol ; 31(5): 1078-1091, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32188697

RESUMEN

BACKGROUND: Fluid overload in patients undergoing hemodialysis contributes to cardiovascular morbidity and mortality. There is a global trend to lower dialysate sodium with the goal of reducing fluid overload. METHODS: To investigate whether lower dialysate sodium during hemodialysis reduces left ventricular mass, we conducted a randomized trial in which patients received either low-sodium dialysate (135 mM) or conventional dialysate (140 mM) for 12 months. We included participants who were aged >18 years old, had a predialysis serum sodium ≥135 mM, and were receiving hemodialysis at home or a self-care satellite facility. Exclusion criteria included hemodialysis frequency >3.5 times per week and use of sodium profiling or hemodiafiltration. The main outcome was left ventricular mass index by cardiac magnetic resonance imaging. RESULTS: The 99 participants had a median age of 51 years old; 67 were men, 31 had diabetes mellitus, and 59 had left ventricular hypertrophy. Over 12 months of follow-up, relative to control, a dialysate sodium concentration of 135 mmol/L did not change the left ventricular mass index, despite significant reductions at 6 and 12 months in interdialytic weight gain, in extracellular fluid volume, and in plasma B-type natriuretic peptide concentration (ratio of intervention to control). The intervention increased intradialytic hypotension (odds ratio [OR], 7.5; 95% confidence interval [95% CI], 1.1 to 49.8 at 6 months and OR, 3.6; 95% CI, 0.5 to 28.8 at 12 months). Five participants in the intervention arm could not complete the trial because of hypotension. We found no effect on health-related quality of life measures, perceived thirst or xerostomia, or dietary sodium intake. CONCLUSIONS: Dialysate sodium of 135 mmol/L did not reduce left ventricular mass relative to control, despite improving fluid status. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: The Australian New Zealand Clinical Trials Registry, ACTRN12611000975998.


Asunto(s)
Ventrículos Cardíacos/efectos de los fármacos , Soluciones para Hemodiálisis/farmacología , Hemodiálisis en el Domicilio/métodos , Hipertrofia Ventricular Izquierda/patología , Diálisis Renal/efectos adversos , Sodio/administración & dosificación , Anciano , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/terapia , Femenino , Hemodiálisis en el Domicilio/efectos adversos , Humanos , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/prevención & control , Hipotensión/etiología , Masculino , Persona de Mediana Edad , Tamaño de los Órganos/efectos de los fármacos , Servicio Ambulatorio en Hospital , Autocuidado , Resultado del Tratamiento , Equilibrio Hidroelectrolítico , Desequilibrio Hidroelectrolítico/etiología , Desequilibrio Hidroelectrolítico/prevención & control
10.
J Environ Manage ; 298: 113519, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34411798

RESUMEN

To date, the high cost of supplying UV irradiation has prevented the widespread application of UV photolysis and titanium dioxide based photocatalysis in removing undesirable organics in the water treatment sector. To overcome this problem, the use of UV-LEDs (365 nm) for photolysis and heterogeneous photocatalysis applying TiO2 coated glass beads under UV-LED illumination (365 nm) in a pilot scale reactor for the elimination of Microcystis aeruginosa PCC7813 and four microcystin analogues (MC-LR, -LY, -LW, -LF) with a view to deployment in drinking water reservoirs was investigated. UV-A (365 nm) photolysis was shown to be more effective than the UV/TiO2 photocatalytic system for the removal of Microcystis aeruginosa cells and microcystins. During photolysis, cell density significantly decreased over 5 days from an initial concentration of 5.8 × 106 cells mL-1 until few cells were left. Both intra- and extracellular microcystin concentrations were significantly reduced by 100 and 92 %, respectively, by day 5 of the UV treatment for all microcystin analogues. During UV/TiO2 treatment, there was great variability between replicates, making prediction of the effect on cyanobacterial cell and toxin behavior difficult.


Asunto(s)
Microcistinas , Microcystis , Toxinas Marinas , Fotólisis , Proyectos Piloto , Titanio
11.
Chemistry ; 25(7): 1787-1794, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30489669

RESUMEN

The strong band-to-band absorption of photocatalysts spanning the whole visible-light region (400-700 nm) is critically important for solar-driven photocatalysis. Although it has been actively and widely used as a photocatalyst for various reactions in the past four decades, TiO2 has a very poor ability to capture the whole spectrum of visible light. In this work, by controlling the spatially homogeneous distribution of boron and nitrogen heteroatoms in anatase TiO2 microspheres with a predominance of high-energy {001} facets, a strong visible-light absorption spectrum with a sharp edge beyond 680 nm has been achieved. The red TiO2 obtained with homogeneous doping of boron and nitrogen shows no increase in defects like Ti3+ that are commonly observed in doped TiO2 . More importantly, it has the ability to induce photocatalytic water oxidation to produce oxygen under the irradiation of visible light beyond 550 nm and also the photocatalytic reduction of water to produce hydrogen under visible light. These results demonstrate the great promise of using red TiO2 for visible-light photocatalytic water splitting and also reveal an attractive strategy for realizing the wide-spectrum visible-light absorption of wide-band-gap oxide photocatalysts.

12.
Int Ophthalmol ; 39(12): 2865-2874, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31209694

RESUMEN

PURPOSE: To investigate the utility of in vivo confocal microscopy (IVCM) in the diagnosis of infectious keratitis (IK). METHODS: Retrospective chart review of 46 patients with a final diagnosis of IK were included in the study. All patients received IVCM corneal imaging using the Heidelberg Retinal Tomography III system. All available scans were randomized and analyzed in a masked fashion. Sensitivity and specificity of IVCM in diagnosing bacterial keratitis (BK), Acanthamoeba keratitis (AK), fungal keratitis (FK), and HSV viral keratitis (VK) were assessed. RESULTS: The pooled sensitivity and specificity of IVCM in identifying atypical IK (AK and FK cases combined) were 85.3% (95% CI 68.2-94.5%) and 100% (95% CI 74.7-100%), respectively. The sensitivity and specificity of IVCM in identifying BK were 66.7% (95% CI 35.4-88.7%) and 89.2% (95% CI 73.4-96.5%), respectively. The sensitivity and specificity of IVCM in identifying VK were 100% (95% CI 46.3-100%) and 93.2% (95% CI 80.3-98.2%). Additionally, IVCM was able to make the correct diagnosis in 8 out of the 11 atypical keratitis cases misdiagnosed clinically. In the AK subgroup, IVCM was more accurate than clinical assessment (16 vs. 11). In the FK subgroup, IVCM were as accurate as clinical assessment, but did correct one misdiagnosed cases by identfying fungal hyphae. CONCLUSION: IVCM is an non-invasive imaging modality that can rapidly and accurately diagnose IK even for experienced corneal specialists. In complex cases of polymicrobial infection, IVCM may guide the correct clinical diagnosis and initiation of the appropriate treatment.


Asunto(s)
Infecciones Bacterianas del Ojo/diagnóstico , Infecciones Fúngicas del Ojo/diagnóstico , Infecciones Virales del Ojo/diagnóstico , Queratitis/diagnóstico , Microscopía Confocal , Queratitis por Acanthamoeba/diagnóstico , Adulto , Anciano , Úlcera de la Córnea/diagnóstico , Femenino , Humanos , Masculino , Microscopía Confocal/métodos , Persona de Mediana Edad , Estudios Retrospectivos , Sensibilidad y Especificidad
15.
Phys Chem Chem Phys ; 20(31): 20489-20496, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30043774

RESUMEN

Here, we have synthesised a range of samples, with the formula (CH3NH3)1-2x(H3NC2H4NH3)xPbI3, with different levels of ethylenediammonium substitution to probe non-stoichiometry at the A-site of the perovskite. A single phase region was identified and is accompanied by a change in photophysical properties. The influence of aliovalent substitution with ethylenediammonium results in a decrease in HOMO level from -5.31 eV for x = 0 to -5.88 eV for x = 0.15.

16.
Chem Soc Rev ; 46(10): 2889-2912, 2017 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-28422193

RESUMEN

A direct carbon fuel cell (DCFC) can produce electricity with both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells. Although the first DCFC prototype was proposed in 1896, there was, until the 1970s, little sustained effort to investigate further, because of technology development issues. Interest in DCFCs has recently been reinvigorated as a possible method of replacing conventional coal-fired power plants to meet the demands for lower CO2 emissions, and indeed for efficient utilisation of waste derived chars. In this article, recent developments in direct carbon conversion are reviewed, with the principal emphasis on the materials involved. The development of electrolytes, anodes and cathodes as well as fuel sources is examined. The activity and chemical stability of the anode materials are a critical concern addressed in the development of new materials. Redox media of molten carbonate or molten metal facilitating the transportation of ions offer promising possibilities for carbon oxidation. The suitability of different carbon fuels in various DCFC systems, in terms of crystal structure, surface properties, impurities and particle size, is also discussed. We explore the influence of a variety of parameters on the electrochemical performance of DCFCs, with regard to their open circuit voltage, power output and lifetime. The challenges faced in developing DCFCs are summarised, and potential prospects of the system are outlined.

17.
Eur J Clin Pharmacol ; 73(1): 71-78, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27683090

RESUMEN

PURPOSE: The aims of this study were to characterise the population pharmacokinetics of oxypurinol in patients receiving haemodialysis and to compare oxypurinol exposure in dialysis and non-dialysis patients. METHODS: Oxypurinol plasma concentrations from 6 gout people receiving haemodialysis and 19 people with gout not receiving dialysis were used to develop a population pharmacokinetic model in NONMEM. Deterministic simulations were used to predict the steady-state area under the oxypurinol plasma concentration time curve over 1 week (AUC7days). RESULTS: The pharmacokinetics of oxypurinol were best described by a one-compartment model with a separate parameter for dialytic clearance. Allopurinol 100 mg daily produced an AUC7days of 279 µmol/L h in dialysis patients, a value 50-75 % lower than the AUC7days predicted for patients with normal renal function taking 200 to 400 mg daily (427-855 µmol/L h). Dosing pre-dialysis resulted in about a 25-35 % reduction in exposure compared to post-dialysis. CONCLUSIONS: Oxypurinol is efficiently removed by dialysis. The population dialytic and total (non-dialytic) clearance of oxypurinol were found to be 8.23 and 1.23 L/h, standardised to a fat-free mass of 70 kg and creatinine clearance of 6 L/h, respectively. Our results suggest that if the combination of low-dose allopurinol and haemodialysis does not result in sustained urate lowering below treatment targets (serum urate ≤0.36 mmol/L), then allopurinol doses may be increased to optimise oxypurinol exposure.


Asunto(s)
Alopurinol/farmacocinética , Supresores de la Gota/farmacocinética , Modelos Biológicos , Oxipurinol/sangre , Diálisis Renal , Adulto , Anciano , Anciano de 80 o más Años , Alopurinol/sangre , Femenino , Gota/sangre , Gota/tratamiento farmacológico , Gota/metabolismo , Supresores de la Gota/sangre , Humanos , Masculino , Persona de Mediana Edad
18.
Graefes Arch Clin Exp Ophthalmol ; 255(9): 1771-1778, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28528377

RESUMEN

PURPOSE: To evaluate corneal innervation and inflammatory cell infiltration using in vivo confocal microscopy (IVCM) and to correlate these findings with subjective symptoms of dry eye, as measured by the Ocular Surface Disease Index (OSDI) in patients with non-Sjögren's (NSDE) and Sjögren's syndrome dry eyes (SSDE). METHODS: Central corneal images were prospectively captured from 10 age-matched healthy control eyes, 24 eyes with clinically diagnosed NSDE and 44 eyes with clinically diagnosed SSDE, using IVCM (HRT III RCM). Density, tortuosity and reflectivity of corneal nerves, presence of inflammatory dendritic cells (DCs) and OSDI scores were evaluated. RESULTS: Images obtained by IVCM from 78 eyes were analyzed. The density of nerve fibers was 1562 ± 996 µm/frame in the SSDE group, 2150 ± 1015 µm/frame in the NSDE group and 2725 ± 687 µm/frame in the control group (P < 0.05, ANOVA). In comparison to the control group, the density of nerve fibers was decreased in the SSDE (P < 0.001) and the NSDE groups (P = 0.06), with increased nerve tortuosity and decreased reflectivity in both groups (both P < 0.05). The density of DCs was 71.65 ± 72.54 cells/mm2 in the SSDE group, 40.33 ± 31.63 cells/mm2 in the NSDE group and 27.53 ± 5.58 cells/mm2 in the control group (P < 0.05, ANOVA). In comparison to the control group, the density of DCs was increased in the SSDE (P < 0.001) and the NSDE groups (P = 0.07). Significant correlations were found between the nerve density and DC density (r = -0.57, P < 0.001), between the nerve density and OSDI scores (r = -0.91, P < 0.001) and between the nerve reflectivity and OSDI scores (r = -0.75, P < 0.001). CONCLUSIONS: The corneas of eyes affected with NSDE and SSDE are characterized by alterations in corneal innervation and infiltration of inflammatory DCs. Corneal nerve density and reflectivity are correlated with severity of subjective dry eye symptoms, as measured by OSDI score.


Asunto(s)
Córnea/inervación , Síndromes de Ojo Seco/diagnóstico , Microscopía Confocal/métodos , Fibras Nerviosas/patología , Nervio Oftálmico/patología , Sensación/fisiología , Síndrome de Sjögren/complicaciones , Recuento de Células , Córnea/fisiopatología , Síndromes de Ojo Seco/etiología , Síndromes de Ojo Seco/fisiopatología , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Persona de Mediana Edad , Nervio Oftálmico/metabolismo , Nervio Oftálmico/fisiopatología , Estudios Prospectivos , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/metabolismo , Lágrimas/metabolismo
19.
Chem Soc Rev ; 45(21): 5951-5984, 2016 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-27704059

RESUMEN

The development and utilization of solar energy in environmental remediation and water splitting is being intensively studied worldwide. During the past few decades, tremendous efforts have been devoted to developing non-toxic, low-cost, efficient and stable photocatalysts for water splitting and environmental remediation. To date, several hundreds of photocatalysts mainly based on metal oxides, sulfides and (oxy)nitrides with different structures and compositions have been reported. Among them, perovskite oxides and their derivatives (layered perovskite oxides) comprise a large family of semiconductor photocatalysts because of their structural simplicity and flexibility. This review specifically focuses on the general background of perovskite and its related materials, summarizes the recent development of perovskite photocatalysts and their applications in water splitting and environmental remediation, discusses the theoretical modelling and calculation of perovskite photocatalysts and presents the key challenges and perspectives on the research of perovskite photocatalysts.

20.
J Am Chem Soc ; 138(51): 16764-16769, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-27976879

RESUMEN

Oxide ion conductors are important materials with a range of technological applications and are currently used as electrolytes for solid oxide fuel cells and solid oxide electrolyzer cells. Here we report the crystal structure and electrical properties of the hexagonal perovskite derivative Ba3MoNbO8.5. Ba3MoNbO8.5 crystallizes in a hybrid of the 9R hexagonal perovskite and palmierite structures. This is a new and so far unique crystal structure that contains a disordered distribution of (Mo/Nb)O6 octahedra and (Mo/Nb)O4 tetrahedra. Ba3MoNbO8.5 shows a wide stability range and exhibits predominantly oxide ion conduction over a pO2 range from 10-20 to 1 atm with a bulk conductivity of 2.2 × 10-3 S cm-1 at 600 °C. The high level of conductivity in a new structure family suggests that further study of hexagonal perovskite derivatives containing mixed tetrahedral and octahedral geometry could open up new horizons in the design of oxygen conducting electrolytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA