Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(4): 1802-1812, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38217501

RESUMEN

Humans interact with thousands of chemicals. This study aims to identify substances of emerging concern and in need of human health risk evaluations. Sixteen pooled human serum samples were constructed from 25 individual samples each from the National Institute of Environmental Health Sciences' Clinical Research Unit. Samples were analyzed using gas chromatography (GC) × GC/time-of-flight (TOF)-mass spectrometry (MS) in a suspect screening analysis, with follow-up confirmation analysis of 19 substances. A standard reference material blood sample was also analyzed through the confirmation process for comparison. The pools were stratified by sex (female and male) and by age (≤45 and >45). Publicly available information on potential exposure sources was aggregated to annotate presence in serum as either endogenous, food/nutrient, drug, commerce, or contaminant. Of the 544 unique substances tentatively identified by spectral matching, 472 were identified in females, while only 271 were identified in males. Surprisingly, 273 of the identified substances were found only in females. It is known that behavior and near-field environments can drive exposures, and this work demonstrates the existence of exposure sources uniquely relevant to females.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Pruebas Hematológicas , Femenino , Humanos , Masculino , Cromatografía de Gases y Espectrometría de Masas/métodos , Pruebas Hematológicas/métodos , Adulto , Persona de Mediana Edad
2.
Environ Sci Technol ; 57(14): 5947-5956, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36995295

RESUMEN

A growing list of chemicals are approved for production and use in the United States and elsewhere, and new approaches are needed to rapidly assess the potential exposure and health hazard posed by these substances. Here, we present a high-throughput, data-driven approach that will aid in estimating occupational exposure using a database of over 1.5 million observations of chemical concentrations in U.S. workplace air samples. We fit a Bayesian hierarchical model that uses industry type and the physicochemical properties of a substance to predict the distribution of workplace air concentrations. This model substantially outperforms a null model when predicting whether a substance will be detected in an air sample, and if so at what concentration, with 75.9% classification accuracy and a root-mean-square error (RMSE) of 1.00 log10 mg m-3 when applied to a held-out test set of substances. This modeling framework can be used to predict air concentration distributions for new substances, which we demonstrate by making predictions for 5587 new substance-by-workplace-type pairs reported in the US EPA's Toxic Substances Control Act (TSCA) Chemical Data Reporting (CDR) industrial use database. It also allows for improved consideration of occupational exposure within the context of high-throughput, risk-based chemical prioritization efforts.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición por Inhalación , Exposición Profesional , Teorema de Bayes , Industrias , Exposición por Inhalación/estadística & datos numéricos , Exposición Profesional/estadística & datos numéricos , Estados Unidos , Lugar de Trabajo
3.
Environ Sci Technol ; 55(16): 11375-11387, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34347456

RESUMEN

Recycled materials are found in many consumer products as part of a circular economy; however, the chemical content of recycled products is generally uncharacterized. A suspect screening analysis using two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS) was applied to 210 products (154 recycled, 56 virgin) across seven categories. Chemicals in products were tentatively identified using a standard spectral library or confirmed using chemical standards. A total of 918 probable chemical structures identified (112 of which were confirmed) in recycled materials versus 587 (110 confirmed) in virgin materials. Identified chemicals were characterized in terms of their functional use and structural class. Recycled paper products and construction materials contained greater numbers of chemicals than virgin products; 733 identified chemicals had greater occurrence in recycled compared to virgin materials. Products made from recycled materials contained greater numbers of fragrances, flame retardants, solvents, biocides, and dyes. The results were clustered to identify groups of chemicals potentially associated with unique chemical sources, and identified chemicals were prioritized for further study using high-throughput hazard and exposure information. While occurrence is not necessarily indicative of risk, these results can be used to inform the expansion of existing models or identify exposure pathways currently neglected in exposure assessments.


Asunto(s)
Retardadores de Llama , Materiales de Construcción , Retardadores de Llama/análisis , Cromatografía de Gases y Espectrometría de Masas , Reciclaje
4.
Anal Bioanal Chem ; 413(30): 7495-7508, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34648052

RESUMEN

With the increasing availability of high-resolution mass spectrometers, suspect screening and non-targeted analysis are becoming popular compound identification tools for environmental researchers. Samples of interest often contain a large (unknown) number of chemicals spanning the detectable mass range of the instrument. In an effort to separate these chemicals prior to injection into the mass spectrometer, a chromatography method is often utilized. There are numerous types of gas and liquid chromatographs that can be coupled to commercially available mass spectrometers. Depending on the type of instrument used for analysis, the researcher is likely to observe a different subset of compounds based on the amenability of those chemicals to the selected experimental techniques and equipment. It would be advantageous if this subset of chemicals could be predicted prior to conducting the experiment, in order to minimize potential false-positive and false-negative identifications. In this work, we utilize experimental datasets to predict the amenability of chemical compounds to detection with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). The assembled dataset totals 5517 unique chemicals either explicitly detected or not detected with LC-ESI-MS. The resulting detected/not-detected matrix has been modeled using specific molecular descriptors to predict which chemicals are amenable to LC-ESI-MS, and to which form(s) of ionization. Random forest models, including a measure of the applicability domain of the model for both positive and negative modes of the electrospray ionization source, were successfully developed. The outcome of this work will help to inform future suspect screening and non-targeted analyses of chemicals by better defining the potential LC-ESI-MS detectable chemical landscape of interest.

5.
Environ Sci Technol ; 54(1): 110-119, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31822065

RESUMEN

The risk to humans from chemicals in consumer products is a function of both hazard and exposure. There is an ongoing effort to quantify chemical exposure due to household articles such as furniture and building materials. Polymers and plastic materials make up a substantial portion of these articles, which may contain chemical additives such as plasticizers. When these additives are not bound to the polymer matrix, they are free to diffuse throughout it and leach or emit from the surface. We have implemented a methodology to predict plasticizer emission from polyvinyl chloride (PVC) products, based on group contribution methods that consider a free volume effect to estimate activity coefficients for chemicals in polymer-solvent solutions. Using the estimated activity coefficients, we calculate steady-state gas phase concentrations for plasticizers in equilibrium with the polymer surface (y0). The method uses only the structure of the chemical and polymer, the weight fraction, and physical-chemical properties, allowing rapid estimation of y0 at different weight fractions in PVC. Using the predicted y0 values and weight fraction data gleaned from public databases, we estimate plasticizer exposures associated with 72 PVC-containing articles using a high-throughput model. We also investigate potential exposures associated with plasticizer substitutions in these products.


Asunto(s)
Artículos Domésticos , Plastificantes , Materiales de Construcción , Humanos , Plásticos , Cloruro de Polivinilo
6.
Environ Sci Technol ; 53(2): 719-732, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30516957

RESUMEN

Prioritizing the potential risk posed to human health by chemicals requires tools that can estimate exposure from limited information. In this study, chemical structure and physicochemical properties were used to predict the probability that a chemical might be associated with any of four exposure pathways leading from sources-consumer (near-field), dietary, far-field industrial, and far-field pesticide-to the general population. The balanced accuracies of these source-based exposure pathway models range from 73 to 81%, with the error rate for identifying positive chemicals ranging from 17 to 36%. We then used exposure pathways to organize predictions from 13 different exposure models as well as other predictors of human intake rates. We created a consensus, meta-model using the Systematic Empirical Evaluation of Models framework in which the predictors of exposure were combined by pathway and weighted according to predictive ability for chemical intake rates inferred from human biomonitoring data for 114 chemicals. The consensus model yields an R2 of ∼0.8. We extrapolate to predict relevant pathway(s), median intake rate, and credible interval for 479 926 chemicals, mostly with minimal exposure information. This approach identifies 1880 chemicals for which the median population intake rates may exceed 0.1 mg/kg bodyweight/day, while there is 95% confidence that the median intake rate is below 1 µg/kg BW/day for 474572 compounds.


Asunto(s)
Exposición a Riesgos Ambientales , Plaguicidas , Consenso , Dieta , Monitoreo del Ambiente , Humanos , Medición de Riesgo
7.
Environ Sci Technol ; 52(5): 3125-3135, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29405058

RESUMEN

A two-dimensional gas chromatography-time-of-flight/mass spectrometry (GC×GC-TOF/MS) suspect screening analysis method was used to rapidly characterize chemicals in 100 consumer products-which included formulations (e.g., shampoos, paints), articles (e.g., upholsteries, shower curtains), and foods (cereals)-and therefore supports broader efforts to prioritize chemicals based on potential human health risks. Analyses yielded 4270 unique chemical signatures across the products, with 1602 signatures tentatively identified using the National Institute of Standards and Technology 2008 spectral database. Chemical standards confirmed the presence of 119 compounds. Of the 1602 tentatively identified chemicals, 1404 were not present in a public database of known consumer product chemicals. Reported data and model predictions of chemical functional use were applied to evaluate the tentative chemical identifications. Estimated chemical concentrations were compared to manufacturer-reported values and other measured data. Chemical presence and concentration data can now be used to improve estimates of chemical exposure, and refine estimates of risk posed to human health and the environment.


Asunto(s)
Productos Domésticos , Cromatografía de Gases y Espectrometría de Masas , Humanos
8.
Environ Sci Technol ; 50(21): 11922-11934, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27668689

RESUMEN

Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.


Asunto(s)
Toma de Decisiones , Medición de Riesgo , Ambiente , Humanos , Modelos Teóricos , Salud Pública , Pruebas de Toxicidad
9.
Environ Sci Technol ; 48(21): 12750-9, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25222184

RESUMEN

United States Environmental Protection Agency (USEPA) researchers are developing a strategy for high-throughput (HT) exposure-based prioritization of chemicals under the ExpoCast program. These novel modeling approaches for evaluating chemicals based on their potential for biologically relevant human exposures will inform toxicity testing and prioritization for chemical risk assessment. Based on probabilistic methods and algorithms developed for The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals (SHEDS-MM), a new mechanistic modeling approach has been developed to accommodate high-throughput (HT) assessment of exposure potential. In this SHEDS-HT model, the residential and dietary modules of SHEDS-MM have been operationally modified to reduce the user burden, input data demands, and run times of the higher-tier model, while maintaining critical features and inputs that influence exposure. The model has been implemented in R; the modeling framework links chemicals to consumer product categories or food groups (and thus exposure scenarios) to predict HT exposures and intake doses. Initially, SHEDS-HT has been applied to 2507 organic chemicals associated with consumer products and agricultural pesticides. These evaluations employ data from recent USEPA efforts to characterize usage (prevalence, frequency, and magnitude), chemical composition, and exposure scenarios for a wide range of consumer products. In modeling indirect exposures from near-field sources, SHEDS-HT employs a fugacity-based module to estimate concentrations in indoor environmental media. The concentration estimates, along with relevant exposure factors and human activity data, are then used by the model to rapidly generate probabilistic population distributions of near-field indirect exposures via dermal, nondietary ingestion, and inhalation pathways. Pathway-specific estimates of near-field direct exposures from consumer products are also modeled. Population dietary exposures for a variety of chemicals found in foods are combined with the corresponding chemical-specific near-field exposure predictions to produce aggregate population exposure estimates. The estimated intake dose rates (mg/kg/day) for the 2507 chemical case-study spanned 13 orders of magnitude. SHEDS-HT successfully reproduced the pathway-specific exposure results of the higher-tier SHEDS-MM for a case-study pesticide and produced median intake doses significantly correlated (p<0.0001, R2=0.39) with medians inferred using biomonitoring data for 39 chemicals from the National Health and Nutrition Examination Survey (NHANES). Based on the favorable performance of SHEDS-HT with respect to these initial evaluations, we believe this new tool will be useful for HT prediction of chemical exposure potential.


Asunto(s)
Simulación por Computador , Dieta , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminantes Ambientales/análisis , Modelos Estadísticos , Multimedia , Biomarcadores/análisis , Humanos , Encuestas Nutricionales , Compuestos Orgánicos/análisis , Plaguicidas/análisis , Procesos Estocásticos
10.
Environ Health Perspect ; 132(1): 17009, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38285237

RESUMEN

BACKGROUND: Xenobiotic metabolites are widely present in human urine and can indicate recent exposure to environmental chemicals. Proper inference of which chemicals contribute to these metabolites can inform human exposure and risk. Furthermore, longitudinal biomonitoring studies provide insight into how chemical exposures change over time. OBJECTIVES: We constructed an exposure landscape for as many human-exposure relevant chemicals over as large a time span as possible to characterize exposure trends across demographic groups and chemical types. METHODS: We analyzed urine data of nine 2-y cohorts (1999-2016) from the National Health and Nutrition Examination Survey (NHANES). Chemical daily intake rates (in milligrams per kilogram bodyweight per day) were inferred, using the R package bayesmarker, from metabolite concentrations in each cohort individually to identify exposure trends. Trends for metabolites and parents were clustered to find chemicals with similar exposure patterns. Exposure variation by age, gender, and body mass index were also assessed. RESULTS: Intake rates for 179 parent chemicals were inferred from 151 metabolites (96 measured in five or more cohorts). Seventeen metabolites and 44 parent chemicals exhibited fold-changes ≥10 between any two cohorts (deltamethrin, di-n-octyl phthalate, and di-isononyl phthalate had the greatest exposure increases). Di-2-ethylhexyl phthalate intake began decreasing in 2007, whereas both di-isobutyl and di-isononyl phthalate began increasing shortly before. Intake for four parabens was markedly higher in females, especially reproductive-age females, compared with males and children. Cadmium and arsenobetaine exhibited higher exposure for individuals >65 years of age and lower for individuals <20 years of age. DISCUSSION: With appropriate analysis, NHANES indicates trends in chemical exposures over the past two decades. Decreases in exposure are observable as the result of regulatory action, with some being accompanied by increases in replacement chemicals. Age- and gender-specific variations in exposure were observed for multiple chemicals. Continued estimation of demographic-specific exposures is needed to both monitor and identify potential vulnerable populations. https://doi.org/10.1289/EHP12188.


Asunto(s)
Monitoreo Biológico , Cadmio , Ácidos Ftálicos , Niño , Femenino , Masculino , Humanos , Encuestas Nutricionales , Índice de Masa Corporal
11.
J Expo Sci Environ Epidemiol ; 34(1): 136-147, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37193773

RESUMEN

BACKGROUND: The number of chemicals present in the environment exceeds the capacity of government bodies to characterize risk. Therefore, data-informed and reproducible processes are needed for identifying chemicals for further assessment. The Minnesota Department of Health (MDH), under its Contaminants of Emerging Concern (CEC) initiative, uses a standardized process to screen potential drinking water contaminants based on toxicity and exposure potential. OBJECTIVE: Recently, MDH partnered with the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) to accelerate the screening process via development of an automated workflow accessing relevant exposure data, including exposure new approach methodologies (NAMs) from ORD's ExpoCast project. METHODS: The workflow incorporated information from 27 data sources related to persistence and fate, release potential, water occurrence, and exposure potential, making use of ORD tools for harmonization of chemical names and identifiers. The workflow also incorporated data and criteria specific to Minnesota and MDH's regulatory authority. The collected data were used to score chemicals using quantitative algorithms developed by MDH. The workflow was applied to 1867 case study chemicals, including 82 chemicals that were previously manually evaluated by MDH. RESULTS: Evaluation of the automated and manual results for these 82 chemicals indicated reasonable agreement between the scores although agreement depended on data availability; automated scores were lower than manual scores for chemicals with fewer available data. Case study chemicals with high exposure scores included disinfection by-products, pharmaceuticals, consumer product chemicals, per- and polyfluoroalkyl substances, pesticides, and metals. Scores were integrated with in vitro bioactivity data to assess the feasibility of using NAMs for further risk prioritization. SIGNIFICANCE: This workflow will allow MDH to accelerate exposure screening and expand the number of chemicals examined, freeing resources for in-depth assessments. The workflow will be useful in screening large libraries of chemicals for candidates for the CEC program.


Asunto(s)
Agua Potable , Humanos , Estados Unidos , Flujo de Trabajo , Algoritmos , Recolección de Datos , Minnesota
12.
J Expo Sci Environ Epidemiol ; 32(6): 794-807, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35710593

RESUMEN

BACKGROUND: Although evidence linking environmental chemicals to breast cancer is growing, mixtures-based exposure evaluations are lacking. OBJECTIVE: This study aimed to identify environmental chemicals in use inventories that co-occur and share properties with chemicals that have association with breast cancer, highlighting exposure combinations that may alter disease risk. METHODS: The occurrence of chemicals within chemical use categories was characterized using the Chemical and Products Database. Co-exposure patterns were evaluated for chemicals that have an association with breast cancer (BC), no known association (NBC), and understudied chemicals (UC) identified through query of the Silent Spring Institute's Mammary Carcinogens Review Database and the U.S. Environmental Protection Agency's Toxicity Reference Database. UCs were ranked based on structure and physicochemical similarities and co-occurrence patterns with BCs within environmentally relevant exposure sources. RESULTS: A total of 6793 chemicals had data available for exposure source occurrence analyses. 50 top-ranking UCs spanning five clusters of co-occurring chemicals were prioritized, based on shared properties with co-occuring BCs, including chemicals used in food production and consumer/personal care products, as well as potential endocrine system modulators. SIGNIFICANCE: Results highlight important co-exposure conditions that are likely prevalent within our everyday environments that warrant further evaluation for possible breast cancer risk. IMPACT STATEMENT: Most environmental studies on breast cancer have focused on evaluating relationships between individual, well-known chemicals and breast cancer risk. This study set out to expand this research field by identifying understudied chemicals and mixtures that may occur in everyday environments due to their patterns of commercial use. Analyses focused on those that co-occur alongside chemicals associated with breast cancer, based upon in silico chemical database querying and analysis. Particularly in instances when understudied chemicals share physicochemical properties and structural features with carcinogens, these chemical mixtures represent conditions that should be studied in future clinical, epidemiological, and toxicological studies.


Asunto(s)
Neoplasias de la Mama , Estados Unidos/epidemiología , Humanos , Femenino , Neoplasias de la Mama/inducido químicamente
13.
J Expo Sci Environ Epidemiol ; 32(6): 833-846, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35978002

RESUMEN

BACKGROUND: Knowing which environmental chemicals contribute to metabolites observed in humans is necessary for meaningful estimates of exposure and risk from biomonitoring data. OBJECTIVE: Employ a modeling approach that combines biomonitoring data with chemical metabolism information to produce chemical exposure intake rate estimates with well-quantified uncertainty. METHODS: Bayesian methodology was used to infer ranges of exposure for parent chemicals of biomarkers measured in urine samples from the U.S population by the National Health and Nutrition Examination Survey (NHANES). Metabolites were probabilistically linked to parent chemicals using the NHANES reports and text mining of PubMed abstracts. RESULTS: Chemical exposures were estimated for various population groups and translated to risk-based prioritization using toxicokinetic (TK) modeling and experimental data. Exposure estimates were investigated more closely for children aged 3 to 5 years, a population group that debuted with the 2015-2016 NHANES cohort. SIGNIFICANCE: The methods described here have been compiled into an R package, bayesmarker, and made publicly available on GitHub. These inferred exposures, when coupled with predicted toxic doses via high throughput TK, can help aid in the identification of public health priority chemicals via risk-based bioactivity-to-exposure ratios.


Asunto(s)
Niño , Humanos , Encuestas Nutricionales , Teorema de Bayes
14.
Sci Data ; 9(1): 314, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710792

RESUMEN

Direct monitoring of chemical concentrations in different environmental and biological media is critical to understanding the mechanisms by which human and ecological receptors are exposed to exogenous chemicals. Monitoring data provides evidence of chemical occurrence in different media and can be used to inform exposure assessments. Monitoring data provide required information for parameterization and evaluation of predictive models based on chemical uses, fate and transport, and release or emission processes. Finally, these data are useful in supporting regulatory chemical assessment and decision-making. There are a wide variety of public monitoring data available from existing government programs, historical efforts, public data repositories, and peer-reviewed literature databases. However, these data are difficult to access and analyze in a coordinated manner. Here, data from 20 individual public monitoring data sources were extracted, curated for chemical and medium, and harmonized into a sustainable machine-readable data format for support of exposure assessments.

15.
J Expo Sci Environ Epidemiol ; 32(6): 820-832, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36435938

RESUMEN

The rapid characterization of risk to humans and ecosystems from exogenous chemicals requires information on both hazard and exposure. The U.S. Environmental Protection Agency's ToxCast program and the interagency Tox21 initiative have screened thousands of chemicals in various high-throughput (HT) assay systems for in vitro bioactivity. EPA's ExpoCast program is developing complementary HT methods for characterizing the human and ecological exposures necessary to interpret HT hazard data in a real-world risk context. These new approach methodologies (NAMs) for exposure include computational and analytical tools for characterizing multiple components of the complex pathways chemicals take from their source to human and ecological receptors. Here, we analyze the landscape of exposure NAMs developed in ExpoCast in the context of various chemical lists of scientific and regulatory interest, including the ToxCast and Tox21 libraries and the Toxic Substances Control Act (TSCA) inventory. We examine the landscape of traditional and exposure NAM data covering chemical use, emission, environmental fate, toxicokinetics, and ultimately external and internal exposure. We consider new chemical descriptors, machine learning models that draw inferences from existing data, high-throughput exposure models, statistical frameworks that integrate multiple model predictions, and non-targeted analytical screening methods that generate new HT monitoring information. We demonstrate that exposure NAMs drastically improve the coverage of the chemical landscape compared to traditional approaches and recommend a set of research activities to further expand the development of HT exposure data for application to risk characterization. Continuing to develop exposure NAMs to fill priority data gaps identified here will improve the availability and defensibility of risk-based metrics for use in chemical prioritization and screening. IMPACT: This analysis describes the current state of exposure assessment-based new approach methodologies across varied chemical landscapes and provides recommendations for filling key data gaps.


Asunto(s)
Ecosistema , Estados Unidos , Humanos
16.
Atmos Chem Phys ; 21(6): 5079-5100, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-34122530

RESUMEN

Volatile chemical products (VCPs) are an increasingly important source of anthropogenic reactive organic carbon (ROC) emissions. Among these sources are everyday items, such as personal care products, general cleaners, architectural coatings, pesticides, adhesives, and printing inks. Here, we develop VCPy, a new framework to model organic emissions from VCPs throughout the United States, including spatial allocation to regional and local scales. Evaporation of a species from a VCP mixture in the VCPy framework is a function of the compound-specific physiochemical properties that govern volatilization and the timescale relevant for product evaporation. We introduce two terms to describe these processes: evaporation timescale and use timescale. Using this framework, predicted national per capita organic emissions from VCPs are 9.5 kg per person per year (6.4 kg C per person per year) for 2016, which translates to 3.05 Tg (2.06 Tg C), making VCPs a dominant source of anthropogenic organic emissions in the United States. Uncertainty associated with this framework and sensitivity to select parameters were characterized through Monte Carlo analysis, resulting in a 95 % confidence interval of national VCP emissions for 2016 of 2.61-3.53 Tg (1.76-2.38 Tg C). This nationwide total is broadly consistent with the U.S. EPA's 2017 National Emission Inventory (NEI); however, county-level and categorical estimates can differ substantially from NEI values. VCPy predicts higher VCP emissions than the NEI for approximately half of all counties, with 5 % of all counties having greater than 55 % higher emissions. Categorically, application of the VCPy framework yields higher emissions for personal care products (150 %) and paints and coatings (25 %) when compared to the NEI, whereas pesticides (-54 %) and printing inks (-13 %) feature lower emissions. An observational evaluation indicates emissions of key species from VCPs are reproduced with high fidelity using the VCPy framework (normalized mean bias of -13 % with r =0.95). Sector-wide, the effective secondary organic aerosol yield and maximum incremental reactivity of VCPs are 5.3 % by mass and 1.58 gO3 g-1, respectively, indicating VCPs are an important, and likely to date underrepresented, source of secondary pollution in urban environments.

17.
Environ Health Perspect ; 129(6): 67006, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34160298

RESUMEN

BACKGROUND: Chemicals in consumer products are a major contributor to human chemical coexposures. Consumers purchase and use a wide variety of products containing potentially thousands of chemicals. There is a need to identify potential real-world chemical coexposures to prioritize in vitro toxicity screening. However, due to the vast number of potential chemical combinations, this identification has been a major challenge. OBJECTIVES: We aimed to develop and implement a data-driven procedure for identifying prevalent chemical combinations to which humans are exposed through purchase and use of consumer products. METHODS: We applied frequent itemset mining to an integrated data set linking consumer product chemical ingredient data with product purchasing data from 60,000 households to identify chemical combinations resulting from co-use of consumer products. RESULTS: We identified co-occurrence patterns of chemicals over all households as well as those specific to demographic groups based on race/ethnicity, income, education, and family composition. We also identified chemicals with the highest potential for aggregate exposure by identifying chemicals occurring in multiple products used by the same household. Last, a case study of chemicals active in estrogen and androgen receptor in silico models revealed priority chemical combinations co-targeting receptors involved in important biological signaling pathways. DISCUSSION: Integration and comprehensive analysis of household purchasing data and product-chemical information provided a means to assess human near-field exposure and inform selection of chemical combinations for high-throughput screening in in vitro assays. https://doi.org/10.1289/EHP8610.


Asunto(s)
Seguridad de Productos para el Consumidor , Exposición a Riesgos Ambientales , Simulación por Computador , Humanos
18.
J Expo Sci Environ Epidemiol ; 30(1): 171-183, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31712628

RESUMEN

Consumer product categorizations for use in predicting human chemical exposure provide a bridge between product composition data and consumer product use pattern information. Furthermore, the categories reflect other factors relevant to developing consumer product exposure scenarios, such as microenvironment of use (e.g., indoors or outdoors), method of application/form of release (e.g., spray versus liquid), release to various media, removal processes (e.g., rinse-off or wipe-off), and route-specific exposure factors (dermal surface areas of application, fraction of release in respirable form). While challenging, developing harmonized product categories can generalize the factors described above allowing for rapid parameterization of route-specific exposure scenario algorithms for new chemical/product applications and efficient utilization of new data on product use or composition. This can be accomplished via mapping product categories to likewise categorized release and use patterns or exposure factors. Here, hierarchical product use categories (PUCs) for consumer products that provide such mappings are presented and crosswalked with other internationally harmonized product categories for consumer exposure assessment. The PUCs were defined by applying use and exposure scenario information to the products in EPA's Chemical and Products Database (CPDat). This paper demonstrates how these PUCs are being used to rapidly parameterize algorithms for scenario-specific use, fate, and exposure in a probabilistic aggregate model of human exposure to chemicals used in consumer products. The PUCs provide a generic representation of consumer products for use in exposure assessment and provide an efficient framework for flexible and rapid data reporting and consumer exposure model parameterization.


Asunto(s)
Seguridad de Productos para el Consumidor , Exposición a Riesgos Ambientales/estadística & datos numéricos , Humanos , Modelos Estadísticos , Medición de Riesgo/métodos
19.
Nat Sustain ; N/A: 1-57, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-33134558

RESUMEN

Consumer, industrial, and commercial product usage is a source of exposure to potentially hazardous chemicals. In addition, cleaning agents, personal care products, coatings, and other volatile chemical products (VCPs), evaporate and react in the atmosphere producing secondary pollutants. Here, we show high air emissions from VCP usage (≥ 14 kg person-1 yr-1, at least 1.7× higher than current operational estimates) are supported by multiple estimation methods and constraints imposed by ambient levels of ozone, hydroxyl radical (OH) reactivity, and the organic component of fine particulate matter (PM2.5) in Pasadena, California. A near-field model, which estimates human chemical exposure during or in the vicinity of product use, indicates these high air emissions are consistent with organic product usage up to ~75 kg person-1 yr-1, and inhalation of consumer products could be a non-negligible exposure pathway. After constraining the PM2.5 yield to 5% by mass, VCPs produce ~41% of the photochemical organic PM2.5 (1.1 ± 0.3 µg m-3) and ~17% of maximum daily 8-hr average ozone (9 ± 2 ppb) in summer Los Angeles. Therefore, both toxicity and ambient criteria pollutant formation should be considered when organic substituents are developed for VCPs in pursuit of safer and sustainable products and cleaner air.

20.
Food Chem Toxicol ; 134: 110819, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31545997

RESUMEN

Programs including the ToxCast project have generated large amounts of in vitro high‒throughput screening (HTS) data, and best approaches for the interpretation and use of HTS data, including for chemical safety assessment, remain to be evaluated. To fill this gap, we conducted case studies of two indirect food additive chemicals where ToxCast data were compared with in vivo toxicity data using the RISK21 approach. Two food contact substances, sodium (2-pyridylthio)-N-oxide and dibutyltin dichloride, were selected, and available exposure data, toxicity data, and model predictions were compiled and assessed. Oral equivalent doses for the ToxCast bioactivity data were determined by in-vitro in-vivo extrapolation (IVIVE). For sodium (2-pyridylthio)-N-oxide, bioactive concentrations in ToxCast assays corresponded to low- and no-observed adverse effect levels in animal studies. For dibutyltin dichloride, the ToxCast bioactive concentrations were below the dose range that demonstrated toxicity in animals; however, this was confounded by the lack of toxicokinetic data, necessitating the use of conservative toxicokinetic parameter estimates for IVIVE calculations. This study highlights the potential utility of the RISK21 approach for interpretation of the ToxCast HTS data, as well as the challenges involved in integrating in vitro HTS data into safety assessments.


Asunto(s)
Exposición Dietética , Aditivos Alimentarios/toxicidad , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodos , Animales , Aditivos Alimentarios/farmacocinética , Humanos , Estados Unidos , United States Environmental Protection Agency
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA