Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 225(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34748013

RESUMEN

During vertical climbing, the gravitational moment tends to pitch the animal's head away from the climbing surface and this may be countered by (1) applying a correcting torque at a discrete contact point, or (2) applying opposing horizontal forces at separate contact points to produce a free moment. We tested these potential strategies in small parrots with an experimental climbing apparatus imitating the fine branches and vines of their natural habitat. The birds climbed on a vertical ladder with four instrumented rungs that measured three-dimensional force and torque, representing the first measurements of multiple contacts from a climbing bird. The parrots ascend primarily by pulling themselves upward using the beak and feet. They resist the gravitational pitching moment with a free moment produced by horizontal force couples between the beak and feet during the first third of the stride and the tail and feet during the last third of the stride. The reaction torque from individual rungs did not counter, but exacerbated the gravitational pitching moment, which was countered entirely by the free moment. Possible climbing limitations were explored using two different rung radii, each with low and high friction surfaces. Rung torque was limited in the large-radius, low-friction condition; however, rung condition did not significantly influence the free moments produced. These findings have implications for our understanding of avian locomotor modules (i.e. coordinated actions of the head-neck, hindlimbs and tail), the use of force couples in vertical locomotion, and the evolution of associated structures.


Asunto(s)
Loros , Animales , Fenómenos Biomecánicos , Pie , Locomoción , Torque
2.
Integr Comp Biol ; 54(6): 1099-108, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25305189

RESUMEN

Trotting, bipedal running, and especially hopping have long been considered the principal bouncing gaits of legged animals. We use the radial-leg spring constant [Formula: see text] to quantify the stiffness of the physical leg during bouncing gaits. The radial-leg is modeled as an extensible strut between the hip and the ground and [Formula: see text] is determined from the force and deflection of this strut in each instance of stance. A Hookean spring is modeled in-series with a linear actuator and the stiffness of this spring [Formula: see text] is determined by minimizing the work of the actuator while reproducing the measured force-deflection dynamics of an individual leg during trotting or running, and of the paired legs during hopping. Prior studies have estimated leg stiffness using [Formula: see text], a metric that imagines a virtual-leg connected to the center of mass. While [Formula: see text] has been applied extensively in human and comparative biomechanics, we show that [Formula: see text] more accurately models the spring in the leg when actuation is allowed, as is the case in biological and robotic systems. Our allometric analysis of [Formula: see text] in the kangaroo rat, tammar wallaby, dog, goat, and human during hopping, trotting, or running show that [Formula: see text] scales as body mass to the two-third power, which is consistent with the predictions of dynamic similarity and with the scaling of [Formula: see text]. Hence, two-third scaling of locomotor spring constants among mammals is supported by both the radial-leg and virtual-leg models, yet the scaling of [Formula: see text] emerges from work-minimization in the radial-leg model instead of being a defacto result of the ratio of force to length used to compute [Formula: see text]. Another key distinction between the virtual-leg and radial-leg is that [Formula: see text] is substantially greater than [Formula: see text], as indicated by a 30-37% greater scaling coefficient for [Formula: see text]. We also show that the legs of goats are on average twice as stiff as those of dogs of the same mass and that goats increase the stiffness of their legs, in part, by more nearly aligning their distal limb-joints with the ground reaction force vector. This study is the first allometric analysis of leg spring constants in two decades. By means of an independent model, our findings reinforce the two-third scaling of spring constants with body mass, while showing that springs in-series with actuators are stiffer than those predicted by energy-conservative models of the leg.


Asunto(s)
Marcha/fisiología , Pierna/fisiología , Locomoción/fisiología , Mamíferos/fisiología , Modelos Biológicos , Animales , Fenómenos Biomecánicos , Peso Corporal , Perros , Humanos , Ratas , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA