Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Glob Chang Biol ; 30(6): e17347, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822663

RESUMEN

Climate change (CC) necessitates reforestation/afforestation programs to mitigate its impacts and maximize carbon sequestration. But comprehending how tree growth, a proxy for fitness and resilience, responds to CC is critical to maximize these programs' effectiveness. Variability in tree response to CC across populations can notably be influenced by the standing genetic variation encompassing both neutral and adaptive genetic diversity. Here, a framework is proposed to assess tree growth potential at the population scale while accounting for standing genetic variation. We applied this framework to black spruce (BS, Picea mariana [Mill] B.S.P.), with the objectives to (1) determine the key climate variables having impacted BS growth response from 1974 to 2019, (2) examine the relative roles of local adaptation and the phylogeographic structure in this response, and (3) project BS growth under two Shared Socioeconomic Pathways while taking standing genetic variation into account. We modeled growth using a machine learning algorithm trained with dendroecological and genetic data obtained from over 2600 trees (62 populations divided in three genetic clusters) in four 48-year-old common gardens, and simulated growth until year 2100 at the common garden locations. Our study revealed that high summer and autumn temperatures negatively impacted BS growth. As a consequence of warming, this species is projected to experience a decline in growth by the end of the century, suggesting maladaptation to anticipated CC and a potential threat to its carbon sequestration capacity. This being said, we observed a clear difference in response to CC within and among genetic clusters, with the western cluster being more impacted than the central and eastern clusters. Our results show that intraspecific genetic variation, notably associated with the phylogeographic structure, must be considered when estimating the response of widespread species to CC.


Asunto(s)
Secuestro de Carbono , Cambio Climático , Variación Genética , Picea , Árboles , Picea/genética , Picea/crecimiento & desarrollo , Árboles/genética , Árboles/crecimiento & desarrollo , Filogeografía
2.
Glob Chang Biol ; 30(4): e17227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558300

RESUMEN

Methods using genomic information to forecast potential population maladaptation to climate change or new environments are becoming increasingly common, yet the lack of model validation poses serious hurdles toward their incorporation into management and policy. Here, we compare the validation of maladaptation estimates derived from two methods-Gradient Forests (GFoffset) and the risk of non-adaptedness (RONA)-using exome capture pool-seq data from 35 to 39 populations across three conifer taxa: two Douglas-fir varieties and jack pine. We evaluate sensitivity of these algorithms to the source of input loci (markers selected from genotype-environment associations [GEA] or those selected at random). We validate these methods against 2- and 52-year growth and mortality measured in independent transplant experiments. Overall, we find that both methods often better predict transplant performance than climatic or geographic distances. We also find that GFoffset and RONA models are surprisingly not improved using GEA candidates. Even with promising validation results, variation in model projections to future climates makes it difficult to identify the most maladapted populations using either method. Our work advances understanding of the sensitivity and applicability of these approaches, and we discuss recommendations for their future use.


Asunto(s)
Bosques , Pseudotsuga , Adaptación Fisiológica/genética , Genómica , Cambio Climático
3.
Plant J ; 111(5): 1469-1485, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35789009

RESUMEN

Spruces (Picea spp.) are coniferous trees widespread in boreal and mountainous forests of the northern hemisphere, with large economic significance and enormous contributions to global carbon sequestration. Spruces harbor very large genomes with high repetitiveness, hampering their comparative analysis. Here, we present and compare the genomes of four different North American spruces: the genome assemblies for Engelmann spruce (Picea engelmannii) and Sitka spruce (Picea sitchensis) together with improved and more contiguous genome assemblies for white spruce (Picea glauca) and for a naturally occurring introgress of these three species known as interior spruce (P. engelmannii × glauca × sitchensis). The genomes were structurally similar, and a large part of scaffolds could be anchored to a genetic map. The composition of the interior spruce genome indicated asymmetric contributions from the three ancestral genomes. Phylogenetic analysis of the nuclear and organelle genomes revealed a topology indicative of ancient reticulation. Different patterns of expansion of gene families among genomes were observed and related with presumed diversifying ecological adaptations. We identified rapidly evolving genes that harbored high rates of non-synonymous polymorphisms relative to synonymous ones, indicative of positive selection and its hitchhiking effects. These gene sets were mostly distinct between the genomes of ecologically contrasted species, and signatures of convergent balancing selection were detected. Stress and stimulus response was identified as the most frequent function assigned to expanding gene families and rapidly evolving genes. These two aspects of genomic evolution were complementary in their contribution to divergent evolution of presumed adaptive nature. These more contiguous spruce giga-genome sequences should strengthen our understanding of conifer genome structure and evolution, as their comparison offers clues into the genetic basis of adaptation and ecology of conifers at the genomic level. They will also provide tools to better monitor natural genetic diversity and improve the management of conifer forests. The genomes of four closely related North American spruces indicate that their high similarity at the morphological level is paralleled by the high conservation of their physical genome structure. Yet, the evidence of divergent evolution is apparent in their rapidly evolving genomes, supported by differential expansion of key gene families and large sets of genes under positive selection, largely in relation to stimulus and environmental stress response.


Asunto(s)
Picea , Tracheophyta , Etiquetas de Secuencia Expresada , Genoma de Planta/genética , Familia de Multigenes/genética , Filogenia , Picea/genética , Tracheophyta/genética
4.
Mol Ecol ; 30(16): 3898-3917, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33586257

RESUMEN

As boreal forests face significant threats from climate change, understanding evolutionary trajectories of coniferous species has become fundamental to adapting management and conservation to a drying climate. We examined the genomic architecture underlying adaptive variation related to drought tolerance in 43 populations of a widespread boreal conifer, white spruce (Picea glauca [Moench] Voss), by combining genotype-environment associations, genotype-phenotype associations, and transcriptomics. Adaptive genetic variation was identified by correlating allele frequencies for 6,153 single nucleotide polymorphisms from 2,606 candidate genes with temperature, precipitation and aridity gradients, and testing for significant associations between genotypes and 11 dendrometric and drought-related traits (i.e., anatomical, growth response and climate-sensitivity traits) using a polygenic model. We identified a set of 285 genes significantly associated with a climatic factor or a phenotypic trait, including 110 that were differentially expressed in response to drought under greenhouse-controlled conditions. The interlinked phenotype-genotype-environment network revealed eight high-confidence genes involved in white spruce adaptation to drought, of which four were drought-responsive in the expression analysis. Our findings represent a significant step toward the characterization of the genomic basis of drought tolerance and adaptation to climate in conifers, which is essential to enable the establishment of resilient forests in view of new climate conditions.


Asunto(s)
Picea , Tracheophyta , Sequías , Genómica , Fenotipo , Picea/genética , Tracheophyta/genética , Transcriptoma , Árboles/genética
5.
Bioinformatics ; 35(21): 4430-4432, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31095290

RESUMEN

MOTIVATION: In the modern genomics era, genome sequence assemblies are routine practice. However, depending on the methodology, resulting drafts may contain considerable base errors. Although utilities exist for genome base polishing, they work best with high read coverage and do not scale well. We developed ntEdit, a Bloom filter-based genome sequence editing utility that scales to large mammalian and conifer genomes. RESULTS: We first tested ntEdit and the state-of-the-art assembly improvement tools GATK, Pilon and Racon on controlled Escherichia coli and Caenorhabditis elegans sequence data. Generally, ntEdit performs well at low sequence depths (<20×), fixing the majority (>97%) of base substitutions and indels, and its performance is largely constant with increased coverage. In all experiments conducted using a single CPU, the ntEdit pipeline executed in <14 s and <3 m, on average, on E.coli and C.elegans, respectively. We performed similar benchmarks on a sub-20× coverage human genome sequence dataset, inspecting accuracy and resource usage in editing chromosomes 1 and 21, and whole genome. ntEdit scaled linearly, executing in 30-40 m on those sequences. We show how ntEdit ran in <2 h 20 m to improve upon long and linked read human genome assemblies of NA12878, using high-coverage (54×) Illumina sequence data from the same individual, fixing frame shifts in coding sequences. We also generated 17-fold coverage spruce sequence data from haploid sequence sources (seed megagametophyte), and used it to edit our pseudo haploid assemblies of the 20 Gb interior and white spruce genomes in <4 and <5 h, respectively, making roughly 50M edits at a (substitution+indel) rate of 0.0024. AVAILABILITY AND IMPLEMENTATION: https://github.com/bcgsc/ntedit. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Genoma Humano , Haploidia , Humanos , Análisis de Secuencia de ADN , Programas Informáticos
6.
New Phytol ; 227(2): 427-439, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32173867

RESUMEN

Drought intensity and frequency are increasing under global warming, with soil water availability now being a major factor limiting tree growth in circumboreal forests. Still, the adaptive capacity of trees in the face of future climatic regimes remains poorly documented. Using 1481 annually resolved tree-ring series from 29-yr-old trees, we evaluated the drought sensitivity of 43 white spruce (Picea glauca (Moench) Voss) populations established in a common garden experiment. We show that genetic variation among populations in response to drought plays a significant role in growth resilience. Local genetic adaptation allowed populations from drier geographical origins to grow better, as indicated by higher resilience to extreme drought events, compared with populations from more humid geographical origins. The substantial genetic variation found for growth resilience highlights the possibility of selecting for drought resilience in boreal conifers. As a major research outcome, we showed that adaptive genetic variation in response to changing local conditions can shape drought vulnerability at the intraspecific level. Our findings have wide implications for forest ecosystem management and conservation.


Asunto(s)
Sequías , Tracheophyta , Cambio Climático , Ecosistema , Bosques , Variación Genética , Tracheophyta/genética , Árboles/genética
7.
New Phytol ; 226(6): 1667-1681, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32157698

RESUMEN

Phenology is an important indicator of environmental variation and climate change impacts on tree responses. In conifers, monitoring phenology of photosynthesis through remote sensing has been unreliable, because needle foliage varies little throughout the year. This is challenging for modelling ecosystem carbon uptake and monitoring phenology for enhanced breeding (genomic selection) and forest health. Here, we demonstrate that drone-based carotenoid-sensitive spectral indices, such as the Chl/carotenoid index (CCI), can be used to track phenology in conifers by taking advantage of the close relationship between seasonally changing carotenoid levels and the variation of photosynthetic activity. Physiological ground measurements, including photosynthetic pigments and maximum quantum yield of Chl fluorescence, indicated that CCI tracked the variation of photosynthetic activity better than other vegetation indices for 30 white spruce seedlings measured over 1 yr. A machine-learning approach, using CCI derived from drone-based multispectral imagery, was used to model phenology of photosynthesis for the entire pedigree population (6000 seedlings). This high-throughput drone-based phenotyping approach is suitable for studying climate change impacts and environmental variation on the physiological status of thousands of field-grown conifers at unprecedented speed and scale.


Asunto(s)
Plantones , Tracheophyta , Ecosistema , Fitomejoramiento , Tecnología de Sensores Remotos , Estaciones del Año
8.
Glob Chang Biol ; 26(8): 4538-4558, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32421921

RESUMEN

The carbon isotope ratio (δ13 C) in tree rings is commonly used to derive estimates of the assimilation-to-stomatal conductance rate of trees, that is, intrinsic water-use efficiency (iWUE). Recent studies have observed increased iWUE in response to rising atmospheric CO2 concentrations (Ca ), in many different species, genera and biomes. However, increasing rates of iWUE vary widely from one study to another, likely because numerous covarying factors are involved. Here, we quantified changes in iWUE of two widely distributed boreal conifers using tree samples from a forest inventory network that were collected across a wide range of growing conditions (assessed using the site index, SI), developmental stages and stand histories. Using tree-ring isotopes analysis, we assessed the magnitude of increase in iWUE after accounting for the effects of tree size, stand age, nitrogen deposition, climate and SI. We also estimated how growth conditions have modulated tree physiological responses to rising Ca . We found that increases in tree size and stand age greatly influenced iWUE. The effect of Ca on iWUE was strongly reduced after accounting for these two variables. iWUE increased in response to Ca , mostly in trees growing on fertile stands, whereas iWUE remained almost unchanged on poor sites. Our results suggest that past studies could have overestimated the CO2 effect on iWUE, potentially leading to biased inferences about the future net carbon balance of the boreal forest. We also observed that this CO2 effect is weakening, which could affect the future capacity of trees to resist and recover from drought episodes.


Asunto(s)
Dióxido de Carbono , Agua , Isótopos de Carbono/análisis , Clima , Bosques
9.
Heredity (Edinb) ; 124(4): 562-578, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31969718

RESUMEN

Genomic selection (GS) has a large potential for improving the prediction accuracy of breeding values and significantly reducing the length of breeding cycles. In this context, the choice of mating designs becomes critical to improve the efficiency of breeding operations and to obtain the largest genetic gains per time unit. Polycross mating designs have been traditionally used in tree and plant breeding to perform backward selection of the female parents. The possibility to use genetic markers for paternity identification and for building genomic prediction models should allow for a broader use of polycross tests in forward selection schemes. We compared the accuracies of genomic predictions of offspring's breeding values from a polycross and a full-sib (partial diallel) mating design with similar genetic background in white spruce (Picea glauca). Trees were phenotyped for growth and wood quality traits, and genotyped for 4092 SNPs representing as many gene loci distributed across the 12 spruce chromosomes. For the polycross progeny test, heritability estimates were smaller, but more precise using the genomic BLUP (GBLUP) model as compared with pedigree-based models accounting for the maternal pedigree or for the reconstructed full pedigree. Cross-validations showed that GBLUP predictions were 22-52% more accurate than predictions based on the maternal pedigree, and 5-7% more accurate than predictions using the reconstructed full pedigree. The accuracies of GBLUP predictions were high and in the same range for most traits between the polycross (0.61-0.70) and full-sib progeny tests (0.61-0.74). However, higher genetic gains per time unit were expected from the polycross mating design given the shorter time needed to conduct crosses. Considering the operational advantages of the polycross design in terms of easier handling of crosses and lower associated costs for test establishment, we believe that this mating scheme offers great opportunities for the development and operational application of forward GS.


Asunto(s)
Cruzamientos Genéticos , Picea , Fitomejoramiento , Selección Genética , Genómica , Modelos Genéticos , Fenotipo , Picea/genética , Polimorfismo de Nucleótido Simple , Tracheophyta
10.
Mol Ecol ; 28(6): 1476-1490, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30270494

RESUMEN

Gene copy number variations (CNVs) involved in phenotypic variations have already been shown in plants, but genomewide testing of CNVs for adaptive variation was not doable until recent technological developments. Thus, reports of the genomic architecture of adaptation involving CNVs remain scarce to date. Here, we investigated F1 progenies of an intraprovenance cross (north-north cross, 58th parallel) and an interprovenances cross (north-south cross, 58th/49th parallels) for CNVs using comparative genomic hybridization on arrays of probes targeting gene sequences in balsam poplar (Populus balsamifera L.), a widespread North American forest tree. A total of 1,721 genes were found in varying copy numbers over the set of 19,823 tested genes. These gene CNVs presented an estimated average size of 8.3 kb and were distributed over poplar's 19 chromosomes including 22 hotspot regions. Gene CNVs number was higher for the interprovenance progeny in accordance with an expected higher genetic diversity related to the composite origin of this family. Regression analyses between gene CNVs and seven adaptive trait variations resulted in 23 significant links; among these adaptive gene CNVs, 30% were located in hotspots. One-to-five gene CNVs were found related to each of the measured adaptive traits and annotated for both biotic and abiotic stress responses. These annotations can be related to the occurrence of a higher pathogenic pressure in the southern parts of balsam poplar's distribution, and higher photosynthetic assimilation rates and water-use efficiency at high latitudes. Overall, our findings suggest that gene CNVs typically having higher mutation rates than SNPs may in fact represent efficient adaptive variations against fast-evolving pathogens.


Asunto(s)
Adaptación Fisiológica/genética , Variaciones en el Número de Copia de ADN/genética , Genoma/genética , Populus/genética , Hibridación Genómica Comparativa , Genómica , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Populus/fisiología
11.
Int J Biometeorol ; 63(12): 1631-1640, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31385094

RESUMEN

There is evidence that the ongoing climate change is happening through nighttime rather than daytime warming. How such a daily-asymmetric warming modifies plant phenology is still unclear. We investigated the effects of asymmetric warming on bud break by daily monitoring seedlings belonging to 26 black spruce [Picea mariana (Mill.) BSP.] and 15 balsam fir [Abies balsamea (L.) Mill.] provenances from the native range in Canada. Seedlings were subjected to either daytime or nighttime warming in three growth chambers at temperatures ranging between 10 and 24 °C. On average, a warming of 4 °C advanced the timings of bud break in both species by 2.4 days, with the later phases being more sensitive to the treatment. Bud break of both species responded more strongly to daytime warming, with the bud break occurred 1.2 and 3.2 days earlier under daytime than nighttime warming in black spruce and balsam fir, respectively. A marked ecotypic differentiation was only observed in black spruce that originated from provenances distributed broadly across Canada, with seedlings from the warmest provenance completing bud break 8.3 days later than those from the coldest one. However, no significant effect of provenance was observed for balsam fir, the narrowly distributed species. Overall, the above results suggest that a higher temporal resolution such as temperatures during daytime and nighttime, and higher spatial resolution should be taken into account to improve the accuracy of phenological model predictions under global change scenarios. Phenological models based on daily average temperature should take into account the diverging impacts of asymmetric warming on plant phenology. Our findings may indicate that the influence of warming on plant phenology may be less dramatic than expected.


Asunto(s)
Abies , Picea , Canadá , Cambio Climático , Estaciones del Año , Plantones , Temperatura
12.
Plant J ; 90(1): 189-203, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28090692

RESUMEN

Over the last decade, extensive genetic and genomic resources have been developed for the conifer white spruce (Picea glauca, Pinaceae), which has one of the largest plant genomes (20 Gbp). Draft genome sequences of white spruce and other conifers have recently been produced, but dense genetic maps are needed to comprehend genome macrostructure, delineate regions involved in quantitative traits, complement functional genomic investigations, and assist the assembly of fragmented genomic sequences. A greatly expanded P. glauca composite linkage map was generated from a set of 1976 full-sib progeny, with the positioning of 8793 expressed genes. Regions with significant low or high gene density were identified. Gene family members tended to be mapped on the same chromosomes, with tandemly arrayed genes significantly biased towards specific functional classes. The map was integrated with transcriptome data surveyed across eight tissues. In total, 69 clusters of co-expressed and co-localising genes were identified. A high level of synteny was found with pine genetic maps, which should facilitate the transfer of structural information in the Pinaceae. Although the current white spruce genome sequence remains highly fragmented, dozens of scaffolds encompassing more than one mapped gene were identified. From these, the relationship between genetic and physical distances was examined and the genome-wide recombination rate was found to be much smaller than most estimates reported for angiosperm genomes. This gene linkage map shall assist the large-scale assembly of the next-generation white spruce genome sequence and provide a reference resource for the conifer genomics community.


Asunto(s)
Genoma de Planta/genética , Picea/genética , Mapeo Cromosómico/métodos , Biología Computacional/métodos , ADN de Plantas/genética , Genómica/métodos , Polimorfismo de Nucleótido Simple/genética , Sintenía
13.
New Phytol ; 218(2): 630-645, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29314017

RESUMEN

Local adaptation in tree species has been documented through a long history of common garden experiments where functional traits (height, bud phenology) are used as proxies for fitness. However, the ability to identify genes or genomic regions related to adaptation to climate requires the evaluation of traits that precisely reflect how and when climate exerts selective constraints. We combine dendroecology with association genetics to establish a link between genotypes, phenotypes and interannual climatic fluctuations. We illustrate this approach by examining individual tree responses embedded in the annual rings of 233 Pinus strobus trees growing in a common garden experiment representing 38 populations from the majority of its range. We found that interannual variability in growth was affected by low temperatures during spring and autumn, and by summer heat and drought. Among-population variation in climatic sensitivity was significantly correlated with the mean annual temperature of the provenance, suggesting local adaptation. Genotype-phenotype associations using these new tree-ring phenotypes validated nine candidate genes identified in a previous genetic-environment association study. Combining dendroecology with association genetics allowed us to assess tree vulnerability to past climate at fine temporal scales and provides avenues for future genomic studies on functional adaptation in forest trees.


Asunto(s)
Adaptación Fisiológica/genética , Cambio Climático , Estudios de Asociación Genética , Pinus/genética , Pinus/fisiología , Árboles/genética , Árboles/fisiología , Genotipo , Geografía , Anotación de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Quebec
14.
Mol Ecol ; 26(21): 5989-6001, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28833771

RESUMEN

Gene copy number variation (CNV) has been associated with phenotypic variability in animals and plants, but a genomewide understanding of their impacts on phenotypes is largely restricted to human and agricultural systems. As such, CNVs have rarely been considered in investigations of the genomic architecture of adaptation in wild species. Here, we report on the genetic mapping of gene CNVs in white spruce, which lacks a contiguous assembly of its large genome (~20 Gb), and their relationships with adaptive phenotypic variation. We detected 3,911 gene CNVs including de novo structural variations using comparative genome hybridization on arrays (aCGH) in a large progeny set. We inferred the heterozygosity at CNV loci within parents by comparing haploid and diploid tissues and genetically mapped 82 gene CNVs. Our analysis showed that CNVs were distributed over 10 linkage groups and identified four CNV hotspots that we predict to occur in other species of the Pinaceae. Significant relationships were found between 29 of the gene CNVs and adaptive traits based on regression analyses with timings of bud set and bud flush, and height growth, suggesting a role for CNVs in climate adaptation. The importance of CNVs in adaptive evolution of white spruce was also indicated by functional gene annotations and the clustering of 31% of the mapped adaptive gene CNVs in CNV hotspots. Taken together, these results illustrate the feasibility of studying CNVs in undomesticated species and represent a major step towards a better understanding of the roles of CNVs in adaptive evolution.


Asunto(s)
Mapeo Cromosómico , Dosificación de Gen , Picea/genética , Adaptación Biológica/genética , Hibridación Genómica Comparativa , ADN de Plantas/genética , Ligamiento Genético , Anotación de Secuencia Molecular , Fenotipo , Quebec
15.
Glob Chang Biol ; 23(1): 446-454, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27196979

RESUMEN

Global warming is diurnally asymmetric, leading to a less cold, rather than warmer, climate. We investigated the effects of asymmetric experimental warming on plant phenology by testing the hypothesis that daytime warming is more effective in advancing bud break than night-time warming. Bud break was monitored daily in Picea mariana seedlings belonging to 20 provenances from Eastern Canada and subjected to daytime and night-time warming in growth chambers at temperatures varying between 8 and 16 °C. The higher advancements of bud break and shorter times required to complete the phenological phases occurred with daytime warming. Seedlings responded to night-time warming, but still with less advancement of bud break than under daytime warming. No advancement was observed when night-time warming was associated with a daytime cooling. The effect of the treatments was uniform across provenances. Our observations realized under controlled conditions allowed to experimentally demonstrate that bud break can advance under night-time warming, but to a lesser extent than under daytime warming. Prediction models using daily timescales could neglect the diverging influence of asymmetric warming and should be recalibrated for higher temporal resolutions.


Asunto(s)
Calentamiento Global , Picea/crecimiento & desarrollo , Temperatura , Canadá , Clima , Estaciones del Año
17.
Int J Biometeorol ; 61(11): 1983-1991, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28646398

RESUMEN

Phenological changes are expected with the ongoing global warming, which could create mismatches in the growth patterns among sympatric species or create synchrony with insect herbivores. In this study, we performed a comparative assessment of the timings of bud break among seven conifer species of Eastern Canada by evaluating seedling development in growth chambers under different temperatures (16, 20 and 24 °C). Bud break occurred earliest in Larix laricina, while Pinus strobus and Pinus resinosa had the latest. Warmer conditions advanced bud break, with the greatest effects being observed at the lower temperatures. Mixed models estimated that one additional degree of temperature produced advancements of 5.3 and 2.1 days at 16 and 20 °C, respectively. The hypothesis of an asynchronous change between species under warming was demonstrated only for the last phenological phases (split buds and exposed shoots), and principally in pines. Abies balsamea showed changes in bud break comparable with the other species analysed, rejecting the hypothesis of mismatches under warmer conditions. The observed non-linear responses of the timings of bud break to warming suggest that the major changes in bud phenology should be expected at the lowest temperatures.


Asunto(s)
Cambio Climático , Tracheophyta/crecimiento & desarrollo , Canadá , Estaciones del Año , Plantones/crecimiento & desarrollo , Temperatura
18.
Plant J ; 83(2): 189-212, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26017574

RESUMEN

White spruce (Picea glauca), a gymnosperm tree, has been established as one of the models for conifer genomics. We describe the draft genome assemblies of two white spruce genotypes, PG29 and WS77111, innovative tools for the assembly of very large genomes, and the conifer genomics resources developed in this process. The two white spruce genotypes originate from distant geographic regions of western (PG29) and eastern (WS77111) North America, and represent elite trees in two Canadian tree-breeding programs. We present an update (V3 and V4) for a previously reported PG29 V2 draft genome assembly and introduce a second white spruce genome assembly for genotype WS77111. Assemblies of the PG29 and WS77111 genomes confirm the reconstructed white spruce genome size in the 20 Gbp range, and show broad synteny. Using the PG29 V3 assembly and additional white spruce genomics and transcriptomics resources, we performed MAKER-P annotation and meticulous expert annotation of very large gene families of conifer defense metabolism, the terpene synthases and cytochrome P450s. We also comprehensively annotated the white spruce mevalonate, methylerythritol phosphate and phenylpropanoid pathways. These analyses highlighted the large extent of gene and pseudogene duplications in a conifer genome, in particular for genes of secondary (i.e. specialized) metabolism, and the potential for gain and loss of function for defense and adaptation.


Asunto(s)
Genoma de Planta , Familia de Multigenes , Fenoles/metabolismo , Picea/genética , Terpenos/metabolismo , Transferasas Alquil y Aril/metabolismo , Biología Computacional , Sistema Enzimático del Citocromo P-450/metabolismo , Transcriptoma
19.
New Phytol ; 209(2): 832-44, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26346922

RESUMEN

UNLABELLED: Natural systems of hybridizing plants are powerful tools with which to assess evolutionary processes between parental species and their associated arthropods. Here we report on these processes in a trispecific hybrid swarm of Populus trees. Using field observations, common garden experiments and genetic markers, we tested the hypothesis that genetic similarities among hosts underlie the distributions of 10 species of gall-forming arthropods and their ability to adapt to new host genotypes. KEY FINDINGS: the degree of genetic relatedness among parental species determines whether hybridization is primarily bidirectional or unidirectional; host genotype and genetic similarity strongly affect the distributions of gall-forming species, individually and as a community. These effects were detected observationally in the wild and experimentally in common gardens; correlations between the diversity of host genotypes and their associated arthropods identify hybrid zones as centres of biodiversity and potential species interactions with important ecological and evolutionary consequences. These findings support both hybrid bridge and evolutionary novelty hypotheses. However, the lack of parallel genetic studies on gall-forming arthropods limits our ability to define the host of origin with their subsequent shift to other host species or their evolution on hybrids as their final destination.


Asunto(s)
Artrópodos , Herbivoria , Populus/genética , Alberta , Animales , Biodiversidad , Evolución Biológica , Quimera , Ecosistema , Hibridación Genética , Populus/fisiología , Árboles , Utah
20.
Am J Bot ; 102(8): 1342-55, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26290557

RESUMEN

UNLABELLED: • Premises of the study: Understanding the influence of recent glacial and postglacial periods on species' distributions is key for predicting the effects of future environmental changes. We investigated the influence of two physiographic landscapes on population structure and postglacial colonization of two white pine species of contrasting habitats: P. monticola, which occurs in the highly mountainous region of western North America, and P. strobus, which occurs in a much less mountainous area in eastern North America.• METHODS: To characterize the patterns of genetic diversity and population structure across the ranges of both species, 158 and 153 single nucleotide polymorphism (SNP) markers derived from expressed genes were genotyped on range-wide samples of 61 P. monticola and 133 P. strobus populations, respectively.• KEY RESULTS: In P. monticola, a steep latitudinal decrease in genetic diversity likely resulted from postglacial colonization involving rare long-distance dispersal (LDD) events. In contrast, no geographic patterns of diversity were detected in P. strobus, suggesting recolonization via a gradually advancing front or frequent LDD events. For each species, structure analyses identified two distinct southern and northern genetic groups that likely originated from two different glacial lineages. At a finer scale, and for the two species, smaller subgroups were detected that could be remnants of cryptic refugia.• CONCLUSION: During postglacial colonization, the western and eastern North American landscapes had different impacts on genetic signatures in P. monticola compared with P. strobus. We discuss the importance of our findings for conservation programs and predictions of species' response to climate change.


Asunto(s)
Variación Genética , Pinus/fisiología , Dispersión de las Plantas , Canadá , Cambio Climático , Pinus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA