Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(9): 338, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073635

RESUMEN

Climate change poses an immediate threat to tropical soils with changes in rainfall patterns resulting in accelerated land degradation processes. To ensure the future sustainability of arable land, it is essential to improve our understanding of the factors that influence soil erosion processes. This work aimed to evaluate patterns of soil erosion using the activity of plutonium isotopes (Pu) at sites with different land use and clearance scale in the Winam Gulf catchment of Lake Victoria in Kenya. Erosion rates were modelled at potential erosive sites using the MODERN model to understand small-scale erosion processes and the effect of different management practices. The lowest soil redistribution rates for arable land were 0.10 Mg ha-1 yr-1 showing overall deposition, resulting from community-led bottom-up mitigation practices. In contrast erosion rates of 8.93 Mg ha-1 yr-1 were found in areas where steep terraces have been formed. This demonstrates the significance of community-led participation in effectively managing land degradation processes. Another key factor identified in the acceleration of soil erosion rates was the clearance of land with an increased rate of erosion over three years reported (0.45 to 0.82 Mg ha-1 yr-1) underlining the importance vegetation cover plays in limiting soil erosion processes. This novel application of fallout plutonium as a tracer, highlights its potential to inform the understanding of how soil erosion processes respond to land management, which will better support implementation of effective mitigation strategies.


Asunto(s)
Plutonio , Erosión del Suelo , Kenia , Plutonio/análisis , Contaminantes Radiactivos del Suelo/análisis , Suelo/química , Monitoreo de Radiación , Modelos Teóricos
2.
Anal Methods ; 15(34): 4226-4235, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37584161

RESUMEN

The analysis of plutonium (Pu) in soil samples can inform the understanding of soil erosion processes globally. However, there are specific challenges associated for analysis in tropical soils and so an optimal analytical methodology ensuring best sensitivity is critical. This method aimed to demonstrate the feasibility of sample preparation and analysis of Pu isotopes in African soils, considering the environmental and cost implications applicable to low-resource laboratories. The separation procedure builds upon previous work using TEVA columns, further demonstrating their usefulness for the reduction of uranium (U) interference in ICP-MS analysis with enhanced selectivity for Pu. Here several steps were optimised to enhance Pu recovery, reducing method blank concentration, and improving the separation efficiency through the determination of the elution profiles of U and Pu. The elimination of the complexing agent in the eluent, increased the spike recovery by improving matrix tolerance of the plasma, and simplified the separation procedure, improving throughput by 20%. The subsequent method was validated through the analysis of Certified Reference Material IAEA-384, where high accuracy and improved precision of measurement were demonstrated (measured value 114 ± 12 versus certified value 108 ± 13 Bq kg-1). Optimisation of the column separation, along with the analysis of the samples using O2 gas in ICP-MS/MS mode to mass shift Pu isotopes away from interfering molecular U ions provided a simple, robust, and cost-effective method with low achievable method detection limits of 0.18 pg kg-1 239+240Pu, applicable to the detection of ultra-trace fallout Pu in African soils.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA