Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 95(13): e0026621, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34110264

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. While previous studies have shown that several SARS-CoV-2 proteins can antagonize the interferon (IFN) response, some of the mechanisms by which they do so are not well understood. In this study, we describe two novel mechanisms by which SARS-CoV-2 blocks the IFN pathway. Type I IFNs and IFN-stimulated genes (ISGs) were poorly induced during SARS-CoV-2 infection, and once infection was established, cells were highly resistant to ectopic induction of IFNs and ISGs. Levels of two key IFN signaling pathway components, Tyk2 and STAT2, were significantly lower in SARS-CoV-2-infected cells. Expression of nonstructural protein 1 (NSP1) or nucleocapsid in the absence of other viral proteins was sufficient to block IFN induction, but only NSP1 was able to inhibit IFN signaling. Mapping studies suggest that NSP1 prevents IFN induction in part by blocking IRF3 phosphorylation. In addition, NSP1-induced depletion of Tyk2 and STAT2 dampened ISG induction. Together, our data provide new insights into how SARS-CoV-2 successfully evades the IFN system to establish infection. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19, a serious disease that can have a myriad of symptoms from loss of taste and smell to pneumonia and hypercoagulation. The rapid spread of SARS-CoV-2 can be attributed in part to asymptomatic transmission, where infected individuals shed large amounts of virus before the onset of disease. This is likely due to the ability of SARS-CoV-2 to effectively suppress the innate immune system, including the IFN response. Indeed, we show that the IFN response is efficiently blocked during SARS-CoV-2 infection, a process that is mediated in large part by nonstructural protein 1 and nucleocapsid. Our study provides new insights on how SARS-CoV-2 evades the IFN response to successfully establish infection. These findings should be considered for the development and administration of therapeutics against SARS-CoV-2.


Asunto(s)
Interferón Tipo I/antagonistas & inhibidores , SARS-CoV-2/metabolismo , Transducción de Señal , Proteínas no Estructurales Virales/metabolismo , Animales , COVID-19/inmunología , COVID-19/virología , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Células HEK293 , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Fosfoproteínas/metabolismo , SARS-CoV-2/patogenicidad , Factor de Transcripción STAT2/metabolismo , TYK2 Quinasa/metabolismo , Células Vero
2.
ACS Infect Dis ; 9(4): 749-761, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37011043

RESUMEN

The recent emergence of SARS-CoV-2 in the human population has caused a global pandemic. The virus encodes two proteases, Mpro and PLpro, that are thought to play key roles in the suppression of host protein synthesis and immune response evasion during infection. To identify the specific host cell substrates of these proteases, active recombinant SARS-CoV-2 Mpro and PLpro were added to A549 and Jurkat human cell lysates, and subtiligase-mediated N-terminomics was used to capture and enrich protease substrate fragments. The precise location of each cleavage site was identified using mass spectrometry. Here, we report the identification of over 200 human host proteins that are potential substrates for SARS-CoV-2 Mpro and PLpro and provide a global mapping of proteolysis for these two viral proteases in vitro. Modulating proteolysis of these substrates will increase our understanding of SARS-CoV-2 pathobiology and COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Péptido Sintasas , Péptido Hidrolasas/metabolismo
3.
Mol Biol Cell ; 32(14): 1273-1282, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34010015

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has triggered global health and economic crises. Here we report the effects of SARS-CoV-2 infection on peroxisomes of human cell lines Huh-7 and SK-N-SH. Peroxisomes undergo dramatic changes in morphology in SARS-CoV-2-infected cells. Rearrangement of peroxisomal membranes is followed by redistribution of peroxisomal matrix proteins to the cytosol, resulting in a dramatic decrease in the number of mature peroxisomes. The SARS-CoV-2 ORF14 protein was shown to interact physically with human PEX14, a peroxisomal membrane protein required for matrix protein import and peroxisome biogenesis. Given the important roles of peroxisomes in innate immunity, SARS-CoV-2 may directly target peroxisomes, resulting in loss of peroxisome structural integrity, matrix protein content and ability to function in antiviral signaling.


Asunto(s)
Peroxisomas/virología , Animales , Línea Celular , Membrana Celular/patología , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Peroxisomas/patología , Fosfoproteínas/metabolismo , Proteínas Represoras/metabolismo , SARS-CoV-2/metabolismo , Células Vero
4.
Cells ; 10(12)2021 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-34944018

RESUMEN

Mayaro virus (MAYV) is an emerging mosquito-transmitted virus that belongs to the genus Alphavirus within the family Togaviridae. Humans infected with MAYV often develop chronic and debilitating arthralgia and myalgia. The virus is primarily maintained via a sylvatic cycle, but it has the potential to adapt to urban settings, which could lead to large outbreaks. The interferon (IFN) system is a critical antiviral response that limits replication and pathogenesis of many different RNA viruses, including alphaviruses. Here, we investigated how MAYV infection affects the induction phase of the IFN response. Production of type I and III IFNs was efficiently suppressed during MAYV infection, and mapping revealed that expression of the viral non-structural protein 2 (nsP2) was sufficient for this process. Interactome analysis showed that nsP2 interacts with DNA-directed RNA polymerase II subunit A (Rpb1) and transcription initiation factor IIE subunit 2 (TFIIE2), which are host proteins required for RNA polymerase II-mediated transcription. Levels of these host proteins were reduced by nsP2 expression and during infection by MAYV and related alphaviruses, suggesting that nsP2-mediated inhibition of host cell transcription is an important aspect of how some alphaviruses block IFN induction. The findings from this study may prove useful in design of vaccines and antivirals, which are currently not available for protection against MAYV and infection by other alphaviruses.


Asunto(s)
Alphavirus/metabolismo , Interacciones Huésped-Patógeno , Interferones/metabolismo , Subunidades de Proteína/metabolismo , Factores de Transcripción TFII/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Regulación hacia Abajo , Humanos , Factor 3 Regulador del Interferón/metabolismo , Unión Proteica , Transporte de Proteínas , ARN Polimerasa II/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA