RESUMEN
Adipose tissue remodeling and plasticity are dynamically regulated by the coordinated functions of adipocytes, macrophages, and endothelial cells and extracellular matrix (ECM) that provides stiffness networks in adipose tissue component cells. Inflammation and fibrosis are crucial exogenous factors that dysregulate adipose tissue functions and drastically change the mechanical properties of the ECM. Therefore, communication among the ECM and adipose tissue component cells is necessary to understand the multifaceted functions of adipose tissues. To obtain in vivo stiffness, we used genipin as a crosslinker for collagen gels. Meanwhile, we isolated primary adipocytes, macrophages, and endothelial cells from C57BL/6J mice and incubated these cells in the differentiation media on temperature-responsive culture dishes. After the differentiation, these cell sheets were transferred onto genipin-crosslinked collagen gels with varying matrix stiffness. We found that inflammatory gene expressions were induced by hard matrix, whereas antiinflammatory gene expressions were promoted by soft matrix in all three types of cells. Interestingly, the coculture experiments of adipocytes, macrophages, and endothelial cells showed that the effects of soft or hard matrix stiffness stimulation on adipocytes were transmitted to the distant adipose tissue component cells, altering their gene expression profiles under normal matrix conditions. Finally, we identified that a hard matrix induces the secretion of CXCL13 from adipocytes, and CXCL13 is one of the important transmitters for stiffness communication with macrophages and endothelial cells. These findings provide insight into the mechanotransmission into distant cells and the application of stiffness control for chronic inflammation in adipose tissues with metabolic dysregulation.
Asunto(s)
Adipocitos , Quimiocina CXCL13 , Células Endoteliales , Matriz Extracelular , Macrófagos , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Adipocitos/metabolismo , Adipocitos/citología , Comunicación Celular , Quimiocina CXCL13/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Macrófagos/citologíaRESUMEN
In veno-arterial extracorporeal membrane oxygenation (VA-ECMO) treatment, the mixing zone is a key hemodynamic factor that determines the efficacy of the treatment. This study aimed to evaluate the applicability of a novel ultrasound technique called vector flow imaging (VFI) for visualizing complex flow patterns in an aorta phantom under VA-ECMO settings. VFI experiments were performed to image aortic hemodynamics under VA-ECMO treatment simulated in an anthropomorphic thoracic aorta phantom using a pulsatile pump (cardiac output: 2.7 L/min) and an ECMO pump with two different flow rates, 0.35 L/min and 1.0 L/min. The cardiac cycle of hemodynamics in the ascending aorta, aortic arch, and descending aorta was visualized, and the spatio-temporal dynamics of flow vectors were analyzed. VFI successfully visualized dynamic flow patterns in the aorta phantom. When the flow rate of the ECMO pump increased, ECMO flow was more dominant than cardiac output in the diastole phase, and the speed of cardiac output was suppressed in the systole phase. Vortex flow patterns were also detected in the ascending aorta and the arch under both ECMO flow rate conditions. The VFI technique may provide new insights into aortic hemodynamics and facilitates effective and safe VA-ECMO treatment.
RESUMEN
PURPOSE: Skin microvessels maintain temperature homeostasis by contracting and dilating upon exposure to changes in temperature. Under general anesthesia, surgical invasiveness, including incisions and coagulation, and the effects of anesthetics may cause variations in the threshold temperature, leading to the constriction and dilation of cutaneous blood vessels. Therefore, studies on skin microvascular circulation are necessary to develop appropriate interventions for complications during surgery. METHODS: We visualized and quantified skin microcirculatory fluctuations associated with temperature variations using a light-emitting diode photoacoustic imaging (LED-PAI) device. The hands of ten healthy volunteers were stressed with four different water temperatures [25â (Control), 15â (Cold1), 40â (Warm), and 15â (Cold2)]. The photoacoustic images of the fingers were taken under each condition, and the microvascular flow owing to temperature stress was quantified as the area of photoacoustic signal (S) in each image. The S values were compared with the variations in blood flow (Q) measured by laser Doppler flowmetry (LDF). RESULTS: The correlation between Q and S according to the 40 measurements was r = 0.45 (pï¼0.01). In addition, the values of S under each stress condition were as follows: Scontrol = 10,826 ± 3364 pixels, Scold1 = 8825 ± 2484 pixels, Swarm = 13,369 ± 3001 pixels, and Scold2 = 8838 ± 1892 pixels; the differences were significant. The LDF blood flow (Q) showed similar changes among conditions. CONCLUSION: These findings suggest that the LED-PAI device could be an option for evaluating microcirculation in association with changes in temperature.
Asunto(s)
Técnicas Fotoacústicas , Humanos , Microcirculación , Temperatura , Piel/irrigación sanguínea , Hemodinámica , Flujo Sanguíneo Regional/fisiología , Flujometría por Láser-Doppler/métodosRESUMEN
KEY MESSAGE: This manuscript reports the fine mapping of a novel QTL, qAC2 controlling the low amylose in rice. The action mechanism of the qAC2 is also investigated by the analysis of genetic interactions to Wx (a), Wx (b), du1, du2 and du3. Amylose content of the rice (Oryza sativa L.) endosperm greatly affects starch properties and eating quality of cooked rice. Seeds of japonica rice cultivar Kuiku162 have low amylose content (AC) and good eating quality. Our analysis revealed a novel QTL, designated as qAC2 that contributed to the low AC of Kuiku162. qAC2 was fine mapped within a 74.9-kb region between two insertion and deletion markers, KID3001 and KID5101, on the long arm of chromosome 2. Seven genes are predicted in this region, but none of them is known to be related to the regulation of AC. The AC of a near-isogenic line (NIL110) carrying qAC2 (Kuiku), the Kuiku162 allele of qAC2, in the genetic background of japonica cultivar Itadaki was lower by 1.1% points than that of Itadaki. The chain length distributions of amylopectin were similar in NIL110 and Itadaki; therefore, the low AC of NIL110 was caused by a decrease in the actual AC, but not by a difference in the amylopectin structure. The interaction analyses revealed that qAC2 (Kuiku) has epistatic interaction with Wx (a). The qAC2 (Kuiku) has epistatic interactions with two loci, du1 and du2, on Wx (b), whereas the genetic effect of qAC2 (Kuiku) has additive to that of du3 on Wx (b). Thus, similar to du1 and du2, qAC2 may have a function related to Wx (b) mRNA splicing.
Asunto(s)
Amilosa/química , Mapeo Cromosómico , Oryza/genética , Sitios de Carácter Cuantitativo , Alelos , Amilopectina/química , Cromosomas de las Plantas , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Ligamiento Genético , Marcadores Genéticos , Mutación INDEL , Repeticiones de Microsatélite , Oryza/química , Semillas/químicaRESUMEN
INTRODUCTION: Transurethral surgery is widely accepted as standard therapy for male urethral obstruction. The present study was undertaken to identify and select lesions to be managed by processing endoscopic images of the urethra for assisting less invasive therapy in patients with voiding dysfunction. MATERIAL AND METHODS: Cystourethroscopic video files of 25 patients with lower urinary tract symptoms were recorded before and after administration of alpha-1 adrenoceptor antagonists. Each video frame was restored and tagged with information indicating the position in the panoramic image of the urethra. A three-dimensional virtual urethra was created to indicate critical lesions for voiding dysfunction, together with fluid dynamics simulation of urine flow. RESULTS: The urine stream was depicted in the virtual urethras in 19 patients. Before therapy, 17 patients showed vortex formation that was diminished after therapy in nine patients with a significant relationship in improvement of relative energy loss of flow (p=0.025). The narrowing points proximal to the vortex, candidate of lesions, were identified in the panoramic image and linked to the endoscopic image. DISCUSSION: Therapeutic designing for endoscopic management was possible in patients with voiding dysfunction based on computational fluid dynamics, and would be promising as "focal" therapy for aging males.
Asunto(s)
Endoscopía del Sistema Digestivo/métodos , Imagenología Tridimensional , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Resección Transuretral de la Próstata/métodos , Obstrucción Uretral/cirugía , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Humanos , Masculino , Hiperplasia Prostática/complicaciones , Obstrucción Uretral/etiologíaRESUMEN
BACKGROUND: High-yielding cultivars of rice (Oryza sativa L.) have been developed in Japan from crosses between overseas indica and domestic japonica cultivars. Recently, next-generation sequencing technology and high-throughput genotyping systems have shown many single-nucleotide polymorphisms (SNPs) that are proving useful for detailed analysis of genome composition. These SNPs can be used in genome-wide association studies to detect candidate genome regions associated with economically important traits. In this study, we used a custom SNP set to identify introgressed chromosomal regions in a set of high-yielding Japanese rice cultivars, and we performed an association study to identify genome regions associated with yield. RESULTS: An informative set of 1152 SNPs was established by screening 14 high-yielding or primary ancestral cultivars for 5760 validated SNPs. Analysis of the population structure of high-yielding cultivars showed three genome types: japonica-type, indica-type and a mixture of the two. SNP allele frequencies showed several regions derived predominantly from one of the two parental genome types. Distinct regions skewed for the presence of parental alleles were observed on chromosomes 1, 2, 7, 8, 11 and 12 (indica) and on chromosomes 1, 2 and 6 (japonica). A possible relationship between these introgressed regions and six yield traits (blast susceptibility, heading date, length of unhusked seeds, number of panicles, surface area of unhusked seeds and 1000-grain weight) was detected in eight genome regions dominated by alleles of one parental origin. Two of these regions were near Ghd7, a heading date locus, and Pi-ta, a blast resistance locus. The allele types (i.e., japonica or indica) of significant SNPs coincided with those previously reported for candidate genes Ghd7 and Pi-ta. CONCLUSIONS: Introgression breeding is an established strategy for the accumulation of QTLs and genes controlling high yield. Our custom SNP set is an effective tool for the identification of introgressed genome regions from a particular genetic background. This study demonstrates that changes in genome structure occurred during artificial selection for high yield, and provides information on several genomic regions associated with yield performance.
Asunto(s)
Genoma de Planta , Oryza/genética , Alelos , Cromosomas de las Plantas , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Japón , Desequilibrio de Ligamiento , Oryza/clasificación , Fenotipo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADNRESUMEN
The prestige target selectivity and imaging depth of optical-resolution photoacoustic microscope (OR-PAM) have gained attentions to enable advanced intra-cellular visualizations. However, the broad-band nature of photoacoustic signals is prone to noise and artifacts caused by the inefficient light-to-pressure translation, resulting in poor image quality. The present study foresees application of singular value decomposition (SVD) to effectively extract the photoacoustic signals from these noise and artifacts. Although spatiotemporal SVD succeeded in ultrasound flow signal extraction, the conventional multi frame model is not suitable for data acquired with scanning OR-PAM due to the burden of accessing multiple frames. To utilize SVD on the OR-PAM, this study began with exploring SVD applied on multiple A-lines of photoacoustic signal instead of frames. Upon explorations, an obstacle of uncertain presence of unwanted singular vectors was observed. To tackle this, a data-driven weighting matrix was designed to extract relevant singular vectors based on the analyses of temporal-spatial singular vectors. Evaluation on the extraction capability by the SVD with the weighting matrix showed a superior signal quality with efficient computation against past studies. In summary, this study contributes to the field by providing exploration of SVD applied on A-line signals as well as its practical utilization to distinguish and recover photoacoustic signals from noise and artifact components.
RESUMEN
In ultrasound image diagnosis, single plane-wave imaging (SPWI), which can acquire ultrasound images at more than 1000 fps, has been used to observe detailed tissue and evaluate blood flow. SPWI achieves high temporal resolution by sacrificing the spatial resolution and contrast of ultrasound images. To improve spatial resolution and contrast in SPWI, coherent plane-wave compounding (CPWC) is used to obtain high-quality ultrasound images, i.e., compound images, by coherent addition of radio frequency (RF) signals acquired by transmitting plane waves in different directions. Although CPWC produces high-quality ultrasound images, their temporal resolution is lower than that of SPWI. To address this problem, some methods have been proposed to reconstruct a ultrasound image comparable to a compound image from RF signals obtained by transmitting a small number of plane waves in different directions. These methods do not fully consider the properties of RF signals, resulting in lower image quality compared to a compound image. In this paper, we propose methods to reconstruct high-quality ultrasound images in SPWI by considering the characteristics of RF signal of a single plane wave to obtain ultrasound images with image quality comparable to CPWC. The proposed methods employ encoder-decoder models of 1D U-Net, 2D U-Net, and their combination to generate the high-quality ultrasound images by minimizing the loss that considers the point spread effect of plane waves and frequency spectrum of RF signals in training. We also create a public large-scale SPWI/CPWC dataset for developing and evaluating deep-learning methods. Through a set of experiments using the public dataset and our dataset, we demonstrate that the proposed methods can reconstruct higher-quality ultrasound images from RF signals in SPWI than conventional method.
RESUMEN
BACKGROUND: Quantitative and comprehensive visualization of urinary flow dynamics in the urethra is crucial for investigating patient-specific mechanisms of lower urinary tract symptoms (LUTS). Although some methods can evaluate the global properties of the urethra, it is critical to assess the local information, such as the location of the responsible lesion and its interactions with urinary flow in relation to LUTS. This approach is vital for enhancing personalized and focal treatments. However, there is a lack of such diagnostic tools that can directly observe how the urethral shape and motion impact urinary flow in the urethra. PURPOSE: This study aimed to develop a novel transrectal ultrasound imaging modality based on the contrast-enhanced urodynamic vector projectile imaging (CE-UroVPI) framework and validate its clinical applicability for visualizing time-resolved flow dynamics in the urethra. METHODS: A new CE-UroVPI system was developed using a research-purpose ultrasound platform and a custom transrectal linear probe, and an imaging protocol for acquiring urodynamic echo data in male patients was designed. Thirty-four male patients with LUTS participated in this study. CE-UroVPI was performed to acquire ultrasound echo signals from the participant's urethra and urinary flow at various voiding phases (initiation, maintenance, and terminal). The ultrasound datasets were processed with custom software to visualize urinary flow dynamics and urethra tissue deformation. RESULTS: The transrectal CE-UroVPI system successfully visualized the time-resolved multidirectional urinary flow dynamics in the prostatic urethra during the initiation, maintenance, and terminal phases of voiding in 17 patients at a frame rate of 1250 fps. The maximum flow speed measured in this study was 2.5 m/s. In addition, when the urethra had an obstruction or an irregular partial deformation, the devised imaging modality visualized complex flow patterns, such as vortices and flow jets around the lesion. CONCLUSIONS: Our study findings demonstrate that the transrectal CE-UroVPI system developed in this study can effectively image fluid-structural interactions in the urethra. This new diagnostic technology has the potential to facilitate quantitative and precise assessments of urethral voiding functions and aid in the improvement of focal and effective treatments for patients with LUTS.
Asunto(s)
Próstata , Uretra , Humanos , Masculino , Uretra/diagnóstico por imagen , Uretra/patología , Proyectos Piloto , Ultrasonografía , Próstata/diagnóstico por imagen , Resultado del TratamientoRESUMEN
Observing alterations in cutaneous vasculature in response to any disease or pathology is considered as a potential diagnostic marker in the progression and cure of a disease. To observe skin morphologies and tissue conditions, high-frequency ultrasound (HFUS) has been used in dermatology, although its ability to selectively visualize micro-vessels is limited due to insufficient Doppler sensitivity to peripheral slow-speed blood flow. In recent studies, this issue has been improved by increasing the sensitivity of Doppler imaging to slow flow, leveraging advanced cutter filtering approaches based on singular value decomposition (SVD) techniques that aid to effectively extract flow signals overlapped with tissue echo signals. Nevertheless, in skin imaging, variations in flow speed, diameter, and depth of the blood vessels at different skin layers can make clutter filtering challenging because these variations are problematic in selecting the optimal cut-off value for the SVD filtering. In this study, we aimed to devise a novel region-based SVD filtering approach for ultrafast HFUS data to visualize cutaneous vascular networks. The proposed method divides the acquired high-framerate data into two regions based on B-mode cutaneous morphological identification (dermis layer and subcutaneous tissue). Singular value decomposition processing was performed on each region to effectively extract the desired flow signal, and the processed regions were merged to generate a single power Doppler image, thereby highlighting the appearance of a complete cutaneous vascular network. Finally, top-hat transform was applied to the power Doppler image to further suppress the background noises and enhances the visibility of the micro-vessels. Experimental observations of the human cutaneous circulation showed that the image quality (contrast-to-noise ratio) through the region-based SVD filtering was measured to be 4.1 dB (before top-hat filtering) and 5.2 dB (after top-hat filtering), which were improved from 3.4 dB and 4.0 dB obtained using the global SVD approach with and without top-hat filtering, respectively. We envisioned that this approach would provide diverse applications in the diagnosis of cutaneous disorders.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Procesamiento de Señales Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Velocidad del Flujo Sanguíneo/fisiología , Fantasmas de Imagen , Ultrasonografía/métodos , Ultrasonografía Doppler/métodosRESUMEN
Vector Doppler is well regarded as a potential way of deriving flow vectors to intuitively visualize complex flow profiles, especially when it is implemented at high frame rates. However, this technique's performance is known to suffer from aliasing artifacts. There is a dire need to devise real-time dealiasing solutions for vector Doppler. In this article, we present a new methodological framework for achieving aliasing-resistant flow vector estimation at real-time throughput from precalculated Doppler frequencies. Our framework comprises a series of compute kernels that have synergized: 1) an extended least squares vector Doppler (ELS-VD) algorithm; 2) single-instruction, multiple-thread (SIMT) processing principles; and 3) implementation on a graphical processing unit (GPU). Results show that this new framework, when executed on an RTX-2080 GPU, can effectively generate aliasing-free flow vector maps using high-frame-rate imaging datasets acquired from multiple transmit-receive angle pairs in a carotid phantom imaging scenario. Over the entire cardiac cycle, the frame processing time for aliasing-resistant vector estimation was measured to be less than 16 ms, which corresponds to a minimum processing throughput of 62.5 frames/s. In a human femoral bifurcation imaging trial with fast flow (150 cm/s), our framework was found to be effective in resolving two-cycle aliasing artifacts at a minimum throughput of 53 frames/s. The framework's processing throughput was generally in the real-time range for practical combinations of ELS-VD algorithmic parameters. Overall, this work represents the first demonstration of real-time, GPU-based aliasing-resistant vector flow imaging using vector Doppler estimation principles.
Asunto(s)
Ultrasonografía Doppler , Humanos , Velocidad del Flujo Sanguíneo , Ultrasonografía Doppler/métodos , Ultrasonografía/métodos , Fantasmas de Imagen , Análisis de los Mínimos CuadradosRESUMEN
We address the problem of limited temporal resolution in optical-resolution microscopy (OR-PAM) for cellular imaging by undersampling and reconstruction. A curvelet transform method in a compressed sensing framework (CS-CVT) was devised to specifically reconstruct the boundary and separability of cell objects in an image. The performance of the CS-CVT approach was justified by comparisons with the natural neighbor interpolation (NNI) followed by smoothing filters on various imaging objects. In addition, a full-raster scanned image was provided as a reference. In terms of structure, CS-CVT produces cellular images with a smoother boundary but less aberration. We found the strength of CS-CVT in recovering high frequency that is important in representing sharp edges which often missing in typical smoothing filters. In a noisy environment, CS-CVT was less affected by the noise compared to NNI with a smoothing filter. Furthermore, CS-CVT could attenuate noise beyond the full raster scanned image. By considering the finest structure in the cellular image, CS-CVT was performing well with a minimum range of undersampling around 5% to 15%. In practice, this undersampling was easily translated into 8- to 4-fold faster OR-PAM imaging. In summary, our approach improves the temporal resolution of OR-PAM without a significant tradeoff in image quality.
RESUMEN
OBJECTIVE: The need for ultrasound flow phantoms to validate ultrasound systems requires the development of materials that can clearly visualize the flow inside for measurement purposes. METHODS: A transparent ultrasound flow phantom material composed of poly(vinyl alcohol) hydrogel (PVA-H) with dimethyl sulfoxide (DMSO) and water solution manufactured using the freezing method and mixed with quartz glass powder to exhibit scattering effects is proposed. To achieve transparency of the hydrogel phantom, the refractive index (RI) was changed to match that of the glass by modifying the PVA concentration and the ratio of DMSO to water in the solvent. The feasibility of optical particle image velocimetry (PIV) was verified by comparing an acrylic rectangular cross-section channel with a rigid wall. After the feasibility tests, an ultrasound flow phantom was fabricated to conduct ultrasound B-mode visualization and Doppler-PIV comparison. DISCUSSION: The results revealed that the PIV measured through PVA-H material exhibited 0.8% error in the measured maximum velocity compared with PIV through the acrylic material. B-mode images are similar to real tissue visualization with a limitation of a higher sound velocity, when compared with human tissue, of 1792 m/s. Doppler measurement of the phantom revealed approximately 120% and 19% overestimation of maximum and mean velocities, respectively, compared with those from PIV. CONCLUSION: The proposed material possesses the advantage of the single-phantom ability to improve the ultrasound flow phantom for validation of flow.
Asunto(s)
Dimetilsulfóxido , Hidrogeles , Humanos , Estudios de Factibilidad , Reología/métodos , Fantasmas de Imagen , Agua , Velocidad del Flujo SanguíneoRESUMEN
PURPOSE: Tissue elasticity can be measured and mapped using color Doppler elastography. In a previous study, a binary pattern of shear waves was observed using a color flow imaging (CFI) system with matched pulse Doppler packet size as well as shear wave frequency and displacement condition. In the present study, we demonstrate the possibility of mapping shear wave velocity and resolving phantom elasticity using any commercial ultrasound machine without fulfilling that condition. METHODS: We derive a relation between Doppler autocorrelator integration time and the estimated flow velocity. The underlying principles behind the shear wave shadows captured by a typical modern ultrasound machine are investigated. The ultrasound machine measurement preset is calibrated to remove the effect of transducer array scanning delay in modifying the appearing wavenumber and thus correct the measurement error. RESULTS: The method was used to successfully measure the elasticity of a biological tissue-mimicking phantom and distinguish a stiff phantom from a soft phantom. CONCLUSION: Using this method, the elasticity of a biological tissue-mimicking phantom can be recovered with less strict constraint. As a result, it provides more flexibility to be implemented in common ultrasound machines. This method may be practically used to help identify tissue stiffness-related disease.
Asunto(s)
Diagnóstico por Imagen de Elasticidad , Elasticidad , Diagnóstico por Imagen de Elasticidad/métodos , Humanos , Fantasmas de Imagen , Transductores , UltrasonografíaRESUMEN
Visualization of cutaneous micro-vasculatures is a determined approach in the diagnosis of skin vascular disorders. Clinically, high frequency ultrasound (HFUS) modalities have been used for cutaneous morphological and structural imaging, but visualization of micro-vessels has always been remained a daunting task. These tiny structures might be visualized by devising a highly sensitive Doppler technique for HFUS systems. In this study, we proposed an imaging framework using HFUS (30 MHz) ultrafast Doppler imaging along with SVD clutter filtering that is proficient in detection of micro-scale circulation. The performance of the devised framework was examined on a 200-micron flow phantom made of poly-vinyl alcohol under four different flow rates (56 - 18 ul/min) and visualized the micro-structure with averaged detected diameter of 93 - 170 µm. The results indicated that the devised framework has sufficient sensitivity and resolvability to visualize the micro-vasculatures in dermis layer of skin (depth ≤ 4 mm). Clinical Relevance - This study brings an insight to visualize in-vivo cutaneous micro-vasculatures with ultrafast Doppler imaging in clinical applications for better assessment of cutaneous disorders.
Asunto(s)
Ultrasonografía Doppler , Fantasmas de Imagen , Ultrasonografía , Ultrasonografía Doppler/métodosRESUMEN
Optical resolution photoacoustic microscopy (OR-PAM) is a remarkable biomedical imaging technique that can selectively visualize microtissues with optical-dependent high resolution. However, traditional OR-PAM using mechanical stages provides slow imaging speed, making it difficult to biologically interpret in vivo tissue. In this study, we developed a high-speed OR-PAM using a recently commercialized MEMS mirror. This system (MEMS-OR-PAM) consists of a 1-axis MEMS mirror and a mechanical stage. Furthermore, this study proposes a novel calibration method that quickly removes the spatial distortion caused by fast MEMS scanning. The proposed calibration method can easily correct distortions caused by both the scan geometry of the MEMS mirror and its nonlinear motion by running an image sequence only once using a ruler target. The combination of MEMS-OR-PAM and distortion correction method was verified using three experiments: (1) leaf skeleton phantom imaging to test the distortion correction efficacy; (2) spatial resolution and depth of field (DOF) measurement for system performance; (3) in-vivo finger capillary imaging to verify their biomedical use. The results showed that the combination could achieve a high-speed (32 s in 2 × 4 mm) and high lateral resolution (~ 6 µm) imaging capability and precisely visualize the circulating structure of the finger capillaries.
Asunto(s)
Sistemas Microelectromecánicos , Técnicas Fotoacústicas , Capilares , Microscopía/métodos , Técnicas Fotoacústicas/métodos , Análisis EspectralRESUMEN
Unmanned aerial vehicles (UAVs) are powerful tools for monitoring crops for high-throughput phenotyping. Time-series aerial photography of fields can record the whole process of crop growth. Canopy height (CH), which is vertical plant growth, has been used as an indicator for the evaluation of lodging tolerance and the prediction of biomass and yield. However, there have been few attempts to use UAV-derived time-series CH data for field testing of crop lines. Here we provide a novel framework for trait prediction using CH data in rice. We generated UAV-based digital surface models of crops to extract CH data of 30 Japanese rice cultivars in 2019, 2020, and 2021. CH-related parameters were calculated in a non-linear time-series model as an S-shaped plant growth curve. The maximum saturation CH value was the most important predictor for culm length. The time point at the maximum CH contributed to the prediction of days to heading, and was able to predict stem and leaf weight and aboveground weight, possibly reflecting the association of biomass with duration of vegetative growth. These results indicate that the CH-related parameters acquired by UAV can be useful as predictors of traits typically measured by hand.
RESUMEN
Phenotypic differences among breeding lines that introduce the same superior gene allele can be a barrier to effective development of cultivars with desirable traits in some crop species. For example, a deficient mutation of the Protein Disulfide Isomerase Like 1-1 (PDIL1-1) gene can cause accumulation of glutelin seed storage protein precursors in rice endosperm, and improves rice flour characteristics and food processing properties. However, the gene must be expressed to be useful. A deficient mutant allele of PDIL1-1 was introduced into two rice cultivars with different genetic backgrounds (Koshihikari and Oonari). The grain components, agronomic traits, and rice flour and food processing properties of the resulting lines were evaluated. The two breeding lines had similar seed storage protein accumulation, amylose content, and low-molecular-weight metabolites. However, only the Koshihikari breeding line had high flour quality and was highly suitable for rice bread, noodles, and sponge cake, evidence of the formation of high-molecular-weight protein complexes in the endosperm. Transcriptome analysis revealed that mRNA levels of fourteen PDI, Ero1, and BiP genes were increased in the Koshihikari breeding line, whereas this change was not observed in the Oonari breeding line. We elucidated part of the molecular basis of the phenotypic differences between two breeding lines possessing the same mutant allele in different genetic backgrounds. The results suggest that certain genetic backgrounds can negate the beneficial effect of the PDIL1-1 mutant allele. Better understanding of the molecular basis for such interactions may accelerate future breeding of novel rice cultivars to meet the strong demand for gluten-free foods.
RESUMEN
Some studies suggested a correlation between tissue elasticity and diseases, such as Adhesive Capsulitis (AC) of the shoulder. One category of method to measure elasticity is by utilizing Doppler imaging. This paper discusses color Doppler shear wave elastography methods and demonstrated an experiment with biological tissue mimicking phantom. A simulation with binary pattern color Doppler shear wave elastography shows that wavelength of a shear wave with suggested magnitude is equal to four multiple of pitch strip in a color flow image. However, the larger amplitude changes the duty ratio and frequency of the pattern. An experiment with biological tissue mimicking Polyvinyl Alcohol (PVA) phantoms has shown that the binary pattern color Doppler method has successfully recovered shear wave velocity map and calculate the elasticity.Clinical Relevance-The result of experiments presents a possibility of using the method for quantitatively access the stage of tissue stiffness related disease.
Asunto(s)
Diagnóstico por Imagen de Elasticidad , Elasticidad , Fantasmas de ImagenRESUMEN
The medical physics community has hitherto lacked an effective calibration phantom to holistically evaluate the performance of three-dimensional (3D) flow imaging techniques. Here, we present the design of a new omnidirectional, three-component (3-C) flow phantom whose lumen is consisted of a helical toroid structure (4 mm lumen diameter; helically winded for 5 revolutions over a torus with 10 mm radius; 5 mm helix radius). This phantom's intraluminal flow trajectory embraces all combinations of x, y, and z directional components, as confirmed using computational fluid dynamics (CFD) simulations. The phantom was physically fabricated via lost-core casting with polyvinyl alcohol cryogel (PVA) as the tissue mimic. 3D ultrasound confirmed that the phantom lumen expectedly resembled a helical toroid geometry. Pulsed Doppler measurements showed that the phantom, when operating under steady flow conditions (3 ml s-1 flow rate), yielded flow velocity magnitudes that agreed well with those derived from CFD at both the inner torus (-47.6 ± 5.7 versus -52.0 ± 2.2 cm s-1; mean ± 1 S.D.) and the outer torus (49.5 ± 4.2 versus 48.0 ± 1.7 cm s-1). Additionally, 3-C velocity vectors acquired from multi-angle pulsed Doppler showed good agreement with CFD-derived velocity vectors (<7% and 10° difference in magnitude and flow angle, respectively). Ultrasound color flow imaging further revealed that the phantom's axial flow pattern was aligned with the CFD-derived flow profile. Overall, the helical toroid phantom has strong potential as an investigative tool in 3D flow imaging innovation endeavors, such as the development of flow vector estimators and visualization algorithms.