Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Biol Chem ; 290(1): 505-19, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25378397

RESUMEN

Notch (N) is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell fate decisions. N has many epidermal growth factor-like repeats that are O-fucosylated by the protein O-fucosyltransferase 1 (O-Fut1), and the O-fut1 gene is essential for N signaling. However, the role of the monosaccharide O-fucose on N is unclear, because O-Fut1 also appears to have O-fucosyltransferase activity-independent functions, including as an N-specific chaperon. Such an enzymatic activity-independent function could account for the essential role of O-fut1 in N signaling. To evaluate the role of the monosaccharide O-fucose modification in N signaling, here we generated a knock-in mutant of O-fut1 (O-fut1(R245A knock-in)), which expresses a mutant protein that lacks O-fucosyltransferase activity but maintains the N-specific chaperon activity. Using O-fut1(R245A knock-in) and other gene mutations that abolish the O-fucosylation of N, we found that the monosaccharide O-fucose modification of N has a temperature-sensitive function that is essential for N signaling. The O-fucose monosaccharide and O-glucose glycan modification, catalyzed by Rumi, function redundantly in the activation of N signaling. We also showed that the redundant function of these two modifications is responsible for the presence of N at the cell surface. Our findings elucidate how different forms of glycosylation on a protein can influence the protein's functions.


Asunto(s)
Drosophila melanogaster/metabolismo , Fucosa/química , Glucosa/química , Procesamiento Proteico-Postraduccional , Transducción de Señal/genética , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Técnicas de Sustitución del Gen , Glucosa/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicosilación , Polisacáridos/química , Polisacáridos/metabolismo , Pliegue de Proteína , Transporte de Proteínas , Receptores Notch/genética , Receptores Notch/metabolismo , Temperatura
2.
Proc Natl Acad Sci U S A ; 109(38): 15318-23, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22949680

RESUMEN

Notch (N) is a transmembrane receptor that mediates cell-cell interactions to determine many cell-fate decisions. N contains EGF-like repeats, many of which have an O-fucose glycan modification that regulates N-ligand binding. This modification requires GDP-L-fucose as a donor of fucose. The GDP-L-fucose biosynthetic pathways are well understood, including the de novo pathway, which depends on GDP-mannose 4,6 dehydratase (Gmd) and GDP-4-keto-6-deoxy-D-mannose 3,5-epimerase/4-reductase (Gmer). However, the potential for intercellularly supplied GDP-L-fucose and the molecular basis of such transportation have not been explored in depth. To address these points, we studied the genetic effects of mutating Gmd and Gmer on fucose modifications in Drosophila. We found that these mutants functioned cell-nonautonomously, and that GDP-L-fucose was supplied intercellularly through gap junctions composed of Innexin-2. GDP-L-fucose was not supplied through body fluids from different isolated organs, indicating that the intercellular distribution of GDP-L-fucose is restricted within a given organ. Moreover, the gap junction-mediated supply of GDP-L-fucose was sufficient to support the fucosylation of N-glycans and the O-fucosylation of the N EGF-like repeats. Our results indicate that intercellular delivery is a metabolic pathway for nucleotide sugars in live animals under certain circumstances.


Asunto(s)
Carbohidrato Epimerasas/metabolismo , Drosophila/metabolismo , Uniones Comunicantes/metabolismo , Guanosina Difosfato Fucosa/química , Hidroliasas/metabolismo , Receptores Notch/metabolismo , Alelos , Animales , Factor de Crecimiento Epidérmico/metabolismo , Fucosa/química , Regulación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Homocigoto , Modelos Genéticos , Mutación , Fenotipo , Recombinación Genética
3.
BMC Genet ; 15: 46, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24739137

RESUMEN

BACKGROUND: Several lines of evidence associate misregulated genetic expression with risk factors for diabetes, Alzheimer's, and other diseases that sporadically develop in healthy adults with no background of hereditary disorders. Thus, we are interested in genes that may be expressed normally through parts of an individual's life, but can cause physiological defects and disease when misexpressed in adulthood. RESULTS: We attempted to identify these genes in a model organism by arbitrarily misexpressing specific genes in adult Drosophila melanogaster, using 14,133 Gene Search lines. We identified 39 "reduced-lifespan genes" that, when misexpressed in adulthood, shortened the flies' lifespan to less than 30% of that of control flies. About half of these genes have human orthologs that are known to be involved in human diseases. For about one-fourth of the reduced-lifespan genes, suppressing apoptosis restored the lifespan shortened by their misexpression. We determined the organs responsible for reduced lifespan when these genes were misexpressed specifically in adulthood, and found that while some genes induced reduced lifespan only when misexpressed in specific adult organs, others could induce reduced lifespan when misexpressed in various organs. This finding suggests that tissue-specific dysfunction may be involved in reduced lifespan related to gene misexpression. Gene ontology analysis showed that reduced-lifespan genes are biased toward genes related to development. CONCLUSIONS: We identified 39 genes that, when misexpressed in adulthood, shortened the lifespan of adult flies. Suppressing apoptosis rescued this shortened lifespan for only a subset of the reduced-lifespan genes. The adult tissues in which gene misexpression caused early death differed among the reduced-lifespan genes. These results suggest that the cause of reduced lifespan upon misexpression differed among the genes.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Genes de Insecto , Genes Letales , Longevidad/genética , Animales , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Masculino
4.
J Biol Chem ; 285(6): 4122-4129, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19948734

RESUMEN

Notch is a transmembrane receptor that shares homology with proteins containing epidermal growth factor-like repeats and mediates the cell-cell interactions necessary for many cell fate decisions. In Drosophila, O-fucosyltransferase 1 catalyzes the O-fucosylation of these epidermal growth factor-like repeats. This O-fucose elongates, resulting in an O-linked tetrasaccharide that regulates the signaling activities of Notch. Fucosyltransferases utilize GDP-fucose, which is synthesized in the cytosol, but fucosylation occurs in the lumen of the endoplasmic reticulum (ER) and Golgi. Therefore, GDP-fucose uptake into the ER and Golgi is essential for fucosylation. However, although GDP-fucose biosynthesis is well understood, the mechanisms and intracellular routes of GDP-fucose transportation remain unclear. Our previous study on the Drosophila Golgi GDP-fucose transporter (Gfr), which specifically localizes to the Golgi, suggested that another GDP-fucose transporter(s) exists in Drosophila. Here, we identified Efr (ER GDP-fucose transporter), a GDP-fucose transporter that localizes specifically to the ER. Efr is a multifunctional nucleotide sugar transporter involved in the biosynthesis of heparan sulfate-glycosaminoglycan chains and the O-fucosylation of Notch. Comparison of the fucosylation defects in the N-glycans in Gfr and Efr mutants revealed that Gfr and Efr made distinct contributions to this modification; Gfr but not Efr was crucial for the fucosylation of N-glycans. We also found that Gfr and Efr function redundantly in the O-fucosylation of Notch, although they had different localizations and nucleotide sugar transportation specificities. These results indicate that two pathways for the nucleotide sugar supply, involving two nucleotide sugar transporters with distinct characteristics and distributions, contribute to the O-fucosylation of Notch.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Receptores Notch/metabolismo , Animales , Transporte Biológico , Western Blotting , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Glicosaminoglicanos/biosíntesis , Glicosilación , Aparato de Golgi/metabolismo , Inmunohistoquímica , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Mutación , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Polisacáridos/metabolismo , Receptores Notch/genética , Transducción de Señal
5.
G3 (Bethesda) ; 8(7): 2421-2431, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29773558

RESUMEN

ELYS determines the subcellular localizations of Nucleoporins (Nups) during interphase and mitosis. We made loss-of-function mutations of Elys in Drosophila melanogaster and found that ELYS is dispensable for zygotic viability and male fertility but the maternal supply is necessary for embryonic development. Subsequent to fertilization, mitotic progression of the embryos produced by the mutant females is severely disrupted at the first cleavage division, accompanied by irregular behavior of mitotic centrosomes. The Nup160 introgression from D. simulans shows close resemblance to that of the Elys mutations, suggesting a common role for those proteins in the first cleavage division. Our genetic experiments indicated critical interactions between ELYS and three Nup107-160 subcomplex components; hemizygotes of either Nup37, Nup96 or Nup160 were lethal in the genetic background of the Elys mutation. Not only Nup96 and Nup160 but also Nup37 of D. simulans behave as recessive hybrid incompatibility genes with D. melanogaster An evolutionary analysis indicated positive natural selection in the ELYS-like domain of ELYS. Here we propose that genetic incompatibility between Elys and Nups may lead to reproductive isolation between D. melanogaster and D. simulans, although direct evidence is necessary.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Epistasis Genética , Genes Letales , Herencia Materna , Mutación , Proteínas de Complejo Poro Nuclear/genética , Animales , Cruzamientos Genéticos , Evolución Molecular , Femenino , Genotipo , Mutación con Pérdida de Función , Masculino , Mitosis/genética , Fenotipo , Mutaciones Letales Sintéticas
6.
Curr Top Dev Biol ; 123: 143-179, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28236966

RESUMEN

Despite intensive research on kinases and protein phosphorylation, most studies focus on kinases localized to the cytosol and nucleus. Studies in Drosophila discovered a novel signaling pathway that regulates growth and planar cell polarity. In this pathway, the atypical cadherin Fat acts as a receptor, and the cadherin Dachsous (Ds) serves as its ligand. Genetic studies in Drosophila identified the four-jointed gene as a regulator of the Fat pathway. Four-jointed (Fj) resides in the Golgi and phosphorylates the cadherin domains of Fat and Ds. Fj-mediated phosphorylations promote the ability of Fat to bind to its ligand Ds and inhibit the ability of Ds to bind Fat, which is biased toward a stronger effect on Fat. Fj is expressed in a gradient in many developing tissues. The Fat-Ds-binding gradient can be explained by the graded activity of Fj that is sufficient to propagate the polarization of complexes across whole tissues. Recent studies revealed a new class of kinases that localize within the secretory pathway and the extracellular space, and phosphorylate proteins and sugar chains in the secretory pathway. Further, they appear to regulate extracellular processes. Mutations of the genes encoding these kinases cause human disease, thus underscoring the biological importance of phosphorylation events within the secretory pathway.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Aparato de Golgi/enzimología , Proteínas Quinasas/metabolismo , Animales , Desarrollo Embrionario , Humanos , Proteínas Quinasas/genética , Vertebrados/metabolismo
7.
G3 (Bethesda) ; 4(11): 2101-6, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25172915

RESUMEN

In interspecific hybrids between Drosophila melanogaster and Drosophila simulans, the D. simulans nucleoporin-encoding Nup96(sim) and Nup160(sim) can cause recessive lethality if the hybrid does not also inherit the D. simulans X chromosome. In addition, Nup160(sim) leads to recessive female sterility in the D. melanogaster genetic background. Here, we conducted carefully controlled crosses to better understandthe relationship between Nup96(sim) and Nup160(sim). Nup96(sim) did not lead to female sterility in the D. melanogaster genetic background, and double introgression of Nup96(sim) and Nup160(sim) did not generally lead to lethality when one was heterozygous and the other homozygous (hemizygous). It appears that introgression of additional autosomal D. simulans genes is necessary to cause lethality and that the effect of the introgression is dominant to D. melanogaster alleles. Interestingly, the genetic background affected dominance of Nup96(sim), and double introgression carrying homozygous Nup96(sim) and hemizygous Nup160(sim) resulted in lethality. Thus, Nup96(sim) and Nup160(sim) seem to be two components of the same incompatibility.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Complejo Poro Nuclear/genética , Animales , Quimera/genética , Genes Dominantes , Heterocigoto , Homocigoto
8.
PLoS One ; 7(8): e42988, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22900076

RESUMEN

Raine syndrome is caused by mutations in FAM20C, which had been reported to encode a secreted component of bone and teeth. We found that FAM20C encodes a Golgi-localized protein kinase, distantly related to the Golgi-localized kinase Four-jointed. Drosophila also encode a Golgi-localized protein kinase closely related to FAM20C. We show that FAM20C can phosphorylate secreted phosphoproteins, including both Casein and members of the SIBLING protein family, which modulate biomineralization, and we find that FAM20C phosphorylates a biologically active peptide at amino acids essential for inhibition of biomineralization. We also identify autophosphorylation of FAM20C, and characterize parameters of FAM20C's kinase activity, including its Km, pH and cation dependence, and substrate specificity. The biochemical properties of FAM20C match those of an enzymatic activity known as Golgi casein kinase. Introduction of point mutations identified in Raine syndrome patients into recombinant FAM20C impairs its normal localization and kinase activity. Our results identify FAM20C as a kinase for secreted phosphoproteins and establish a biochemical basis for Raine syndrome.


Asunto(s)
Anomalías Múltiples/genética , Fisura del Paladar/genética , Exoftalmia/genética , Proteínas de la Matriz Extracelular/metabolismo , Aparato de Golgi/enzimología , Microcefalia/genética , Osteosclerosis/genética , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Quinasa de la Caseína I , Línea Celular , Activación Enzimática/genética , Proteínas de la Matriz Extracelular/genética , Expresión Génica , Humanos , Mutación , Fosforilación , Transporte de Proteínas
9.
PLoS One ; 6(8): e22984, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21826223

RESUMEN

The peroxisome biogenesis disorders (PBDs) are currently difficult-to-treat multiple-organ dysfunction disorders that result from the defective biogenesis of peroxisomes. Genes encoding Peroxins, which are required for peroxisome biogenesis or functions, are known causative genes of PBDs. The human peroxin genes PEX3 or PEX16 are required for peroxisomal membrane protein targeting, and their mutations cause Zellweger syndrome, a class of PBDs. Lack of understanding about the pathogenesis of Zellweger syndrome has hindered the development of effective treatments. Here, we developed potential Drosophila models for Zellweger syndrome, in which the Drosophila pex3 or pex16 gene was disrupted. As found in Zellweger syndrome patients, peroxisomes were not observed in the homozygous Drosophila pex3 mutant, which was larval lethal. However, the pex16 homozygote lacking its maternal contribution was viable and still maintained a small number of peroxisome-like granules, even though PEX16 is essential for the biosynthesis of peroxisomes in humans. These results suggest that the requirements for pex3 and pex16 in peroxisome biosynthesis in Drosophila are different, and the role of PEX16 orthologs may have diverged between mammals and Drosophila. The phenotypes of our Zellweger syndrome model flies, such as larval lethality in pex3, and reduced size, shortened longevity, locomotion defects, and abnormal lipid metabolisms in pex16, were reminiscent of symptoms of this disorder, although the Drosophila pex16 mutant does not recapitulate the infant death of Zellweger syndrome. Furthermore, pex16 mutants showed male-specific sterility that resulted from the arrest of spermatocyte maturation. pex16 expressed in somatic cyst cells but not germline cells had an essential role in the maturation of male germline cells, suggesting that peroxisome-dependent signals in somatic cyst cells could contribute to the progression of male germ-cell maturation. These potential Drosophila models for Zellweger syndrome should contribute to our understanding of its pathology.


Asunto(s)
Proteínas de la Membrana/genética , Peroxisomas/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/metabolismo , Animales , Encéfalo/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Femenino , Masculino , Microscopía Electrónica , Actividad Motora/genética , Actividad Motora/fisiología , Mutación
10.
Curr Biol ; 20(9): 811-7, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20434335

RESUMEN

In addition to quantitative differences in morphogen signaling specifying cell fates, the vector and slope of morphogen gradients influence planar cell polarity (PCP) and growth. The cadherin Fat plays a central role in this process. Fat regulates PCP and growth through distinct downstream pathways, each involving the establishment of molecular polarity within cells. Fat is regulated by the cadherin Dachsous (Ds) and the protein kinase Four-jointed (Fj), which are expressed in gradients in many tissues. Previous studies have implied that Fat is regulated by the vector and slope of these expression gradients. Here, we characterize how cells interpret the Fj gradient. We demonstrate that Fj both promotes the ability of Fat to bind to its ligand Ds and inhibits the ability of Ds to bind Fat. Consequently, the juxtaposition of cells with differing Fj expression results in asymmetric Fat:Ds binding. We also show that the influence of Fj on Fat is a direct consequence of Fat phosphorylation and identify a phosphorylation site important for the stimulation of Fat:Ds binding by Fj. Our results define a molecular mechanism by which a morphogen gradient can drive the polarization of Fat activity to influence PCP and growth.


Asunto(s)
Cadherinas/fisiología , Moléculas de Adhesión Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Glicoproteínas de Membrana/fisiología , Animales , Sitios de Unión/genética , Sitios de Unión/fisiología , Cadherinas/genética , Moléculas de Adhesión Celular/genética , Línea Celular , Polaridad Celular/genética , Polaridad Celular/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes del Desarrollo/genética , Genes del Desarrollo/fisiología , Glicoproteínas de Membrana/genética , Fosforilación
11.
Science ; 321(5887): 401-4, 2008 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-18635802

RESUMEN

The atypical cadherin Fat acts as a receptor for a signaling pathway that regulates growth, gene expression, and planar cell polarity. Genetic studies in Drosophila identified the four-jointed gene as a regulator of Fat signaling. We show that four-jointed encodes a protein kinase that phosphorylates serine or threonine residues within extracellular cadherin domains of Fat and its transmembrane ligand, Dachsous. Four-jointed functions in the Golgi and is the first molecularly defined kinase that phosphorylates protein domains destined to be extracellular. An acidic sequence motif (Asp-Asn-Glu) within Four-jointed was essential for its kinase activity in vitro and for its biological activity in vivo. Our results indicate that Four-jointed regulates Fat signaling by phosphorylating cadherin domains of Fat and Dachsous as they transit through the Golgi.


Asunto(s)
Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Aparato de Golgi/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Quinasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Cadherinas/química , Moléculas de Adhesión Celular/química , Línea Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Ensayo de Cambio de Movilidad Electroforética , Glicosilación , Aparato de Golgi/enzimología , Cinética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Serina/metabolismo , Transducción de Señal , Treonina/metabolismo
12.
Genes Cells ; 12(1): 89-103, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17212657

RESUMEN

Notch (N) and its ligands, Delta (Dl) and Serrate (Ser), are transmembrane proteins that mediate the cell-cell interactions necessary for many cell-fate decisions. In Drosophila, N is predominantly localized to the apical portion of epithelial cells, but the mechanisms and functions of this localization are unknown. Here, we found N, Dl, and Ser were mostly located in the region from the subapical complex (SAC) to the apical portion of the adherens junctions (AJs) in wing disc epithelium. N was delivered to the SAC/AJs in two phases. First, polarized exocytosis specifically delivered nascent N to the apical plasma membrane and AJs in an O-fut1-independent manner. Second, N at the plasma membrane was relocated to the SAC/AJs by Dynamin- and Rab5-dependent transcytosis; this step required the O-fut1 function. Disruption of the apical polarity by Drosophila E-cadherin (DEcad) knock down caused N and Dl localization to the SAC/AJs to fail. N, but not Dl, formed a specific complex with DEcad in vivo. Finally, our results suggest that juxtacrine signaling in epithelia generally depends on the apicobasally polarized structure of epithelial cells.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Células Epiteliales/metabolismo , Exocitosis/fisiología , Receptores Notch/metabolismo , Uniones Adherentes/metabolismo , Animales , Cadherinas/genética , Cadherinas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Endocitosis , Células Epiteliales/química , Células Epiteliales/ultraestructura , Fucosiltransferasas/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteína Jagged-1 , Ligandos , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Receptores Notch/análisis , Proteínas Serrate-Jagged , Transducción de Señal
13.
Development ; 134(7): 1347-56, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17329366

RESUMEN

Notch is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell-fate decisions. Endocytic trafficking of Notch plays important roles in the activation and downregulation of this receptor. A Drosophila O-FucT-1 homolog, encoded by O-fut1, catalyzes the O-fucosylation of Notch, a modification essential for Notch signaling and ligand binding. It was recently proposed that O-fut1 acts as a chaperon for Notch in the endoplasmic reticulum and is required for Notch to exit the endoplasmic reticulum. Here, we report that O-fut1 has additional functions in the endocytic transportation of Notch. O-fut1 was indispensable for the constitutive transportation of Notch from the plasma membrane to the early endosome, which we show was independent of the O-fucosyltransferase activity of O-fut1. We also found that O-fut1 promoted the turnover of Notch, which consequently downregulated Notch signaling. O-fut1 formed a stable complex with the extracellular domain of Notch. In addition, O-fut1 protein added to conditioned medium and endocytosed was sufficient to rescue normal Notch transportation to the early endosome in O-fut1 knockdown cells. Thus, an extracellular interaction between Notch and O-fut1 is essential for the normal endocytic transportation of Notch. We propose that O-fut1 is the first example, except for ligands, of a molecule that is required extracellularly for receptor transportation by endocytosis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Fucosiltransferasas/metabolismo , Regulación de la Expresión Génica , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Western Blotting , Células Cultivadas , Drosophila/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Transporte de Proteínas/fisiología
14.
EMBO J ; 26(6): 1475-86, 2007 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-17332754

RESUMEN

Alcadeinalpha (Alcalpha) is an evolutionarily conserved type I membrane protein expressed in neurons. We show here that Alcalpha strongly associates with kinesin light chain (K(D) approximately 4-8x10(-9) M) through a novel tryptophan- and aspartic acid-containing sequence. Alcalpha can induce kinesin-1 association with vesicles and functions as a novel cargo in axonal anterograde transport. JNK-interacting protein 1 (JIP1), an adaptor protein for kinesin-1, perturbs the transport of Alcalpha, and the kinesin-1 motor complex dissociates from Alcalpha-containing vesicles in a JIP1 concentration-dependent manner. Alcalpha-containing vesicles were transported with a velocity different from that of amyloid beta-protein precursor (APP)-containing vesicles, which are transported by the same kinesin-1 motor. Alcalpha- and APP-containing vesicles comprised mostly separate populations in axons in vivo. Interactions of Alcalpha with kinesin-1 blocked transport of APP-containing vesicles and increased beta-amyloid generation. Inappropriate interactions of Alc- and APP-containing vesicles with kinesin-1 may promote aberrant APP metabolism in Alzheimer's disease.


Asunto(s)
Transporte Axonal/fisiología , Proteínas de Unión al Calcio/metabolismo , Cinesinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Motoras Moleculares/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Western Blotting , Drosophila , Inmunoprecipitación , Ratones , Microscopía Fluorescente , ARN Interferente Pequeño/genética , Vesículas Transportadoras/fisiología
15.
Proc Natl Acad Sci U S A ; 102(51): 18532-7, 2005 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-16344471

RESUMEN

Congenital disorder of glycosylation IIc (CDG IIc), also termed leukocyte adhesion deficiency II, is a recessive syndrome characterized by slowed growth, mental retardation, and severe immunodeficiency. Recently, the gene responsible for CDG IIc was found to encode a GDP-fucose transporter. Here, we investigated the possible cause of the developmental defects in CDG IIc patients by using a Drosophila model. Biochemically, we demonstrated that a Drosophila homolog of the GDP-fucose transporter, the Golgi GDP-fucose transporter (Gfr), specifically transports GDP-fucose in vitro. To understand the function of the Gfr gene, we generated null mutants of Gfr in Drosophila. The phenotypes of the Drosophila Gfr mutants were rescued by the human GDP-fucose transporter transgene. Our phenotype analyses revealed that Notch (N) signaling was deficient in these Gfr mutants. GDP-fucose is known to be essential for the fucosylation of N-linked glycans and for O-fucosylation, and both fucose modifications are present on N. Our results suggest that Gfr is involved in the fucosylation of N-linked glycans on N and its O-fucosylation, as well as those of bulk proteins. However, despite the essential role of N O-fucosylation during development, the Gfr homozygote was viable. Thus, our results also indicate that the Drosophila genome encodes at least another GDP-fucose transporter that is involved in the O-fucosylation of N. Finally, we found that mammalian Gfr is required for N signaling in mammalian cultured cells. Therefore, our results implicate reduced N signaling in the pathology of CDG IIc.


Asunto(s)
Proteínas de Drosophila/deficiencia , Drosophila melanogaster/metabolismo , Síndrome de Deficiencia de Adhesión del Leucocito/metabolismo , Receptores Notch/deficiencia , Animales , Línea Celular Tumoral , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Fucosa/metabolismo , Glicosilación , Aparato de Golgi/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Humanos , Síndrome de Deficiencia de Adhesión del Leucocito/genética , Ligandos , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Mutación/genética , Fenotipo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal
16.
Development ; 130(20): 4785-95, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12917292

RESUMEN

Notch signalling, which is highly conserved from nematodes to mammals, plays crucial roles in many developmental processes. In the Drosophila embryo, deficiency in Notch signalling results in neural hyperplasia, commonly referred to as the neurogenic phenotype. We identify a novel maternal neurogenic gene, neurotic, and show that it is essential for Notch signalling. neurotic encodes a Drosophila homolog of mammalian GDP-fucose protein O-fucosyltransferase, which adds fucose sugar to epidermal growth factor-like repeats and is known to play a crucial role in Notch signalling. neurotic functions in a cell-autonomous manner, and genetic epistasis tests reveal that Neurotic is required for the activity of the full-length but not an activated form of Notch. Further, we show that neurotic is required for Fringe activity, which encodes a fucose-specific beta1, 3 N-acetylglucosaminyltransferase, previously shown to modulate Notch receptor activity. Finally, Neurotic is essential for the physical interaction of Notch with its ligand Delta, and for the ability of Fringe to modulate this interaction in Drosophila cultured cells. We present an unprecedented example of an absolute requirement of a protein glycosylation event for a ligand-receptor interaction. Our results suggest that O-fucosylation catalysed by Neurotic is also involved in the Fringe-independent activities of Notch and may provide a novel on-off mechanism that regulates ligand-receptor interactions.


Asunto(s)
Drosophila/embriología , Fucosiltransferasas/genética , Proteínas de la Membrana/metabolismo , Animales , Drosophila/metabolismo , Proteínas de Drosophila , Fucosiltransferasas/metabolismo , Genes Reporteros , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Receptores Notch
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA