Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nano Lett ; 24(26): 7833-7842, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38887996

RESUMEN

Tobacco mild green mosaic virus (TMGMV)-like nanocarriers were designed for gene delivery to plant cells. High aspect ratio TMGMVs were coated with a polycationic biopolymer, poly(allylamine) hydrochloride (PAH), to generate highly charged nanomaterials (TMGMV-PAH; 56.20 ± 4.7 mV) that efficiently load (1:6 TMGMV:DNA mass ratio) and deliver single-stranded and plasmid DNA to plant cells. The TMGMV-PAH were taken up through energy-independent mechanisms in Arabidopsis protoplasts. TMGMV-PAH delivered a plasmid DNA encoding a green fluorescent protein (GFP) to the protoplast nucleus (70% viability), as evidenced by GFP expression using confocal microscopy and Western blot analysis. TMGMV-PAH were inactivated (iTMGMV-PAH) using UV cross-linking to prevent systemic infection in intact plants. Inactivated iTMGMV-PAH-mediated pDNA delivery and gene expression of GFP in vivo was determined using confocal microscopy and RT-qPCR. Virus-like nanocarrier-mediated gene delivery can act as a facile and biocompatible tool for advancing genetic engineering in plants.


Asunto(s)
Arabidopsis , Proteínas Fluorescentes Verdes , Arabidopsis/virología , Arabidopsis/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas de Transferencia de Gen , Plásmidos/genética , Poliaminas/química , Protoplastos/metabolismo , Nanoestructuras/química , ADN/química , ADN/administración & dosificación
2.
Mol Ther ; 30(5): 1966-1978, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34774754

RESUMEN

To advance a novel concept of debulking virus in the oral cavity, the primary site of viral replication, virus-trapping proteins CTB-ACE2 were expressed in chloroplasts and clinical-grade plant material was developed to meet FDA requirements. Chewing gum (2 g) containing plant cells expressed CTB-ACE2 up to 17.2 mg ACE2/g dry weight (11.7% leaf protein), have physical characteristics and taste/flavor like conventional gums, and no protein was lost during gum compression. CTB-ACE2 gum efficiently (>95%) inhibited entry of lentivirus spike or VSV-spike pseudovirus into Vero/CHO cells when quantified by luciferase or red fluorescence. Incubation of CTB-ACE2 microparticles reduced SARS-CoV-2 virus count in COVID-19 swab/saliva samples by >95% when evaluated by microbubbles (femtomolar concentration) or qPCR, demonstrating both virus trapping and blocking of cellular entry. COVID-19 saliva samples showed low or undetectable ACE2 activity when compared with healthy individuals (2,582 versus 50,126 ΔRFU; 27 versus 225 enzyme units), confirming greater susceptibility of infected patients for viral entry. CTB-ACE2 activity was completely inhibited by pre-incubation with SARS-CoV-2 receptor-binding domain, offering an explanation for reduced saliva ACE2 activity among COVID-19 patients. Chewing gum with virus-trapping proteins offers a general affordable strategy to protect patients from most oral virus re-infections through debulking or minimizing transmission to others.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/genética , Animales , Goma de Mascar , Cricetinae , Cricetulus , Procedimientos Quirúrgicos de Citorreducción , Humanos , Unión Proteica , SARS-CoV-2 , Saliva/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus
3.
Angew Chem Int Ed Engl ; 62(15): e202300580, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792537

RESUMEN

Fluorescence monitoring of ATP in different organelles is now feasible with a few biosensors developed, which, however, show low sensitivity, limited biocompatibility, and accessibility. Small-molecule ATP probes that alleviate those limitations thus have received much attention recently, leading to a few ATP probes that target several organelles except for the nucleus. We disclose the first small-molecule probe that selectively detects nuclear ATP through reversible binding, with 25-fold fluorescence enhancement at pH 7.4 and excellent selectivity against various biologically relevant species. Using the probe, we observed 2.1-3.3-fold and 3.9-7.8-fold higher nuclear ATP levels in cancerous cell lines and tumor tissues compared with normal cell lines and tissues, respectively, which are explained by the higher nuclear ATP level in the mitosis phase. The probe has great potential for studying nuclear ATP-associated biology.


Asunto(s)
Núcleo Celular , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Fluorescencia , Línea Celular , Adenosina Trifosfato
4.
Plant Biotechnol J ; 17(6): 1094-1105, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30468023

RESUMEN

Plants have recently received a great deal of attention as a means of producing recombinant proteins. Despite this, a limited number of recombinant proteins are currently on the market and, if plants are to be more widely used, a cost-effective and efficient purification method is urgently needed. Although affinity tags are convenient tools for protein purification, the presence of a tag on the recombinant protein is undesirable for many applications. A cost-effective method of purification using an affinity tag and the removal of the tag after purification has been developed. The family 3 cellulose-binding domain (CBM3), which binds to microcrystalline cellulose, served as the affinity tag and the small ubiquitin-related modifier (SUMO) and SUMO-specific protease were used to remove it. This method, together with size-exclusion chromatography, enabled purification of human interleukin-6 (hIL6) with a yield of 18.49 mg/kg fresh weight from leaf extracts of Nicotiana benthamiana following Agrobacterium-mediated transient expression. Plant-produced hIL6 (P-hIL6) contained less than 0.2 EU/µg (0.02 ng/mL) endotoxin. P-hIL6 activated the Janus kinase-signal transducer and activator of transcriptional pathways in human LNCaP cells, and induced expression of IL-21 in activated mouse CD4+ T cells. This approach is thus a powerful method for producing recombinant proteins in plants.


Asunto(s)
Biotecnología , Interleucina-6 , Nicotiana , Proteínas Recombinantes , Animales , Biotecnología/economía , Células Cultivadas , Cromatografía de Afinidad , Humanos , Interleucina-6/genética , Interleucina-6/aislamiento & purificación , Interleucina-6/metabolismo , Ratones , Hojas de la Planta/química , Hojas de la Planta/genética , Proteínas Recombinantes/economía , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Nicotiana/genética
5.
Plant Cell Rep ; 38(12): 1485-1499, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31432212

RESUMEN

KEY MESSAGE: We produced a biologically active phage-encoded endolysin, LysP11, in N. benthamiana. Plant-produced LysP11 exhibited robust antimicrobial activity against E. rhusiopathiae, and C-terminal domain of LysP11 bound specifically to E. rhusiopathiae. Bacterial resistance to antibiotics, a serious issue in terms of global public health, is one of the leading causes of death today. Thus, new antimicrobial agents are needed to combat pathogens. Recent research suggests that bacteriophages and endolysins derived from bacteriophages are potential alternatives to traditional antibiotics. Here, we examined the antimicrobial activity of LysP11, which is encoded by Propionibacterium phage P1.1 and comprises an N-terminal amidase-2 domain and a C-terminal domain with no homology to other bacteriophage endolysins. LysP11 was produced in Nicotiana benthamiana (N. benthamiana) using an Agrobacterium-mediated transient expression strategy. LysP11 was purified on microcrystalline cellulose-binding resin after attachment of the Clostridium thermocellum-derived family 3 cellulose-binding domain as an affinity tag. The affinity tag was removed using the small ubiquitin-related modifier (SUMO) domain and SUMO-specific protease. Plant-produced LysP11 showed strong antimicrobial activity toward Erysipelothrix rhusiopathiae (E. rhusiopathiae), mediated via lysis of the cell wall. Lytic activity was optimal at pH 8.0-9.0 (37 °C) and increased at higher concentrations of NaCl up to 400 mM. Furthermore, the C-terminal domain of LysP11 bound specifically to the E. rhusiopathiae cell wall. Based on these results, we propose that LysP11 is a potential candidate antimicrobial agent against E. rhusiopathiae.


Asunto(s)
Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Endopeptidasas/metabolismo , Endopeptidasas/farmacología , Erysipelothrix/efectos de los fármacos , Nicotiana/metabolismo , Pared Celular/metabolismo
6.
ACS Nano ; 16(8): 12156-12173, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35943045

RESUMEN

Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-ß-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-ß-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 µmol gFW-1) above control plant levels (0.03441 µmol gFW-1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (-17%) and carbon assimilation rates at saturation light levels (-32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Nanotubos de Carbono/química , Peróxido de Hidrógeno/metabolismo , Cloroplastos/metabolismo , Fotosíntesis , Nanoestructuras/química , Plantas , Hojas de la Planta/química , Agroquímicos/análisis , Agroquímicos/metabolismo , Agroquímicos/farmacología
7.
Front Plant Sci ; 11: 440, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32328082

RESUMEN

Plants show great potential for producing recombinant proteins in a cost-effective manner. Many strategies have therefore been employed to express high levels of recombinant proteins in plants. Although foreign domains are fused to target proteins for high expression or as an affinity tag for purification, the retention of foreign domains on a target protein may be undesirable, especially for biomedical purposes. Thus, their removal is often crucial at a certain time point after translation. Here, we developed a new strategy to produce target proteins without foreign domains. This involved in vivo removal of foreign domains fused to the N-terminus by the small ubiquitin-related modifier (SUMO) domain/SUMO-specific protease system. This strategy was tested successfully by generating a recombinant gene, BiP:p38:bdSUMO : His:hLIF, that produced human leukemia inhibitory factor (hLIF) fused to p38, a coat protein of the Turnip crinkle virus; the inclusion of p38 increased levels of protein expression. The recombinant protein was expressed at high levels in the leaf tissue of Nicotiana benthamiana. Coexpression of bdSENP1, a SUMO-specific protease, proteolytically released His:hLIF from the full-length recombinant protein in the endoplasmic reticulum of N. benthamiana leaf cells. His:hLIF was purified from leaf extracts via Ni2+-NTA affinity purification resulting in a yield of 32.49 mg/kg, and the N-terminal 5-residues were verified by amino acid sequencing. Plant-produced His:hLIF was able to maintain the pluripotency of mouse embryonic stem cells. This technique thus provides a novel method of removing foreign domains from a target protein in planta.

8.
Enzyme Microb Technol ; 108: 66-73, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29108629

RESUMEN

A human pepsinogen C (hPGC) gene was synthesized with rice-optimized codon usage and cloned into a rice expression vector containing the promoter, signal peptide, and terminator derived from the rice α-amylase 3D (Ramy3D) gene. In addition, a 6-His tag was added to the 3' end of the synthetic hPGC gene for easy purification. The plant expression vector was introduced into rice calli (Oryza sativa L. cv. Dongjin) mediated by Agrobacterium tumefaciens. The integration of the hPGC gene into the chromosome of the transgenic rice callus and hPGC expression in transgenic rice cell suspensions was verified via genomic DNA polymerase chain reaction amplification and Northern blot analysis. Western blot analysis indicated both hPGC and its mature form, human pepsin C, with masses of 42- and 36-kDa in the culture medium under sugar starvation conditions. Human pepsin C was purified from the culture medium using a Ni-NTA agarose column and the NH2-terminal 5-residue sequences were verified by amino acid sequencing. The hydrolyzing activity of human pepsin C was confirmed using bovine hemoglobin as a substrate. The optimum pH and temperature for pepsin activity were 2.0 and 40°C, respectively.


Asunto(s)
Pepsina A/metabolismo , Pepsinógeno C/metabolismo , Agrobacterium tumefaciens/genética , Secuencia de Aminoácidos , Animales , Bovinos , Línea Celular , Activación Enzimática , Vectores Genéticos , Hemoglobinas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Oryza/genética , Oryza/metabolismo , Pepsina A/química , Pepsina A/genética , Pepsinógeno C/química , Pepsinógeno C/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura
9.
Asian Pac J Trop Med ; 8(6): 431-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26194826

RESUMEN

OBJECTIVE: To investigate in vitro antioxidant and in vivo antitumor activity of the crude methanolic extract of Aponogeton undulatus (A. undulatus) (MAU) along with its various organic fractions. METHODS: A. undulatus leaves were successively extracted using methanol (MAU) and then fractionated by chloroform, ethyl acetate (EAU) and water. The total antioxidant capacity, lipid peroxidation inhibition assay, 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay and ferrous reducing power assessment were used to evaluate the antioxidant potential of the crude extract and its organic fractions. The in vivo antitumor activity is evaluated against Ehrlich ascites carcinoma (EAC) cell bearing in Swiss albino mice. RESULTS: EAU showed the highest antioxidant capacity as (175.80 ± 0.41) mg/g, IC50 value of DPPH scavenging activity was (38.84 ± 0.02) µg/mL and also exhibited maximum lipid peroxidation inhibition activity with the IC50 value of (42.52 ± 0.32) µg/mL than other fractions. The results demonstrate that reducing power of the extract was concentration dependent. In addition, EAU was administered at 50, 100 and 200 mg/kg body weight respectively to EAC cell bearing mice and a significant (P < 0.05) decrease in tumor volume, packed cell volume and viable cell count and also increased the life span (17.52%, 42.53% and 62.05%). Hematological profiles were restored to normal levels in MAU treated mice as compared to EAC control mice. CONCLUSIONS: The results were found to be significant and confirmed that the A. undulatus has remarkable antitumor activity with antioxidant potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA