Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Monit Assess ; 195(7): 863, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336819

RESUMEN

Potentially toxic metals (PTMs) contamination in the soil poses a serious danger to people's health by direct or indirect exposure, and generally it occurs by consuming food grown in these soils. The present study assessed the pollution levels and risk to human health upon sustained exposure to PTM concentrations in the area's centuries-old glass industry clusters of the city of Firozabad, Uttar Pradesh, India. Soil sampling (0-15 cm) was done in farmers' fields within a 1 km radius of six industrial clusters. Various environmental (geo-accumulation index, contamination factor, pollution load index, enrichment factor, and ecological risk index) and health risk indices (hazard quotient, carcinogenic risk) were computed to assess the extent of damage caused to the environment and the threat to human health. Results show that the mean concentrations of Cu (33 mg kg-1), Zn (82.5 mg kg-1), and Cr (15.3 mg kg-1) were at safe levels, whereas the levels of Pb, Ni, and Cd exceeded their respective threshold limits. A majority of samples (88%) showed considerable ecological risk due to the co-contamination of these six PTMs. Health risk assessment indicated tolerable cancer and non-cancer risk in both adults and children for all PTMs, except Ni, where adults were exposed to potential threat of cancer. Pearson's correlation study revealed a significant positive correlation between all six metal pairs and conducting principal component analysis (PCA) confirmed the common source of metal pollution. The PC score ranked different sites from highest to lowest according to PTM loads that help to establish the location of the source. Hierarchical cluster analysis grouped different sites into the same cluster based on similarity in PTMs load, i.e., low, medium, and high.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Niño , Adulto , Humanos , Suelo , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Intoxicación por Metales Pesados , India , Medición de Riesgo , China
2.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430435

RESUMEN

Treprostinil palmitil (TP) is a prodrug of treprostinil (TRE), a pulmonary vasodilator that has been previously formulated for inhaled administration via a nebulizer. TP demonstrates a sustained presence in the lungs with reduced systemic exposure and prolonged inhibition of hypoxia-induced pulmonary vasoconstriction in vivo. Here, we report on re-formulation efforts to develop a more convenient solution-based metered-dose inhaler (MDI) formulation of TP, a treprostinil palmitil inhalation aerosol (TPIA) that matches the pharmacokinetic (PK) and efficacy profile of a nebulized TP formulation, treprostinil palmitil inhalation suspension (TPIS). MDI canisters were manufactured using a two-stage filling method. Aerosol performance, formulation solubility, and chemical stability assays were utilized for in vitro evaluation. For in vivo studies, TPIA formulations were delivered to rodents using an inhalation tower modified for MDI delivery. Using an iterative process involving evaluation of formulation performance in vitro (TP and excipient solubility, chemical stability, physical stability, and aerosol properties) and confirmatory testing in vivo (rat PK and efficacy, guinea pig cough), a promising formulation was identified. The optimized formulation, TPIA-W, demonstrates uniform in vitro drug delivery, a PK profile suitable for a once-daily administration, efficacy lasting at least 12 h in a hypoxic challenge model, and a significantly higher cough threshold than the parent drug treprostinil.


Asunto(s)
Aerosoles/farmacología , Epoprostenol/análogos & derivados , Profármacos/farmacología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Administración por Inhalación , Animales , Modelos Animales de Enfermedad , Composición de Medicamentos , Epoprostenol/química , Epoprostenol/farmacología , Cobayas , Humanos , Nanopartículas/química , Profármacos/química , Hipertensión Arterial Pulmonar/patología , Ratas , Vasoconstricción/efectos de los fármacos , Vasodilatadores/química , Vasodilatadores/farmacología
3.
Sci Total Environ ; 927: 172088, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554975

RESUMEN

Microplastics (MPs) is the second most important environmental issue and can potentially enter into food chain through farmland contamination and other means. There are no standardized extraction methods for quantification of MPs in soil. The embedded errors and biases generated serious problems regarding the comparability of different studies and leading to erroneous estimation. To address this gap, present study was formulated to develop an efficient method for MPs analysis suitable for a wide range of soil and organic matrices. A method based on Vis-NIR (Visible-Near Infra Red) spectroscopy is developed for four different soil belonging to Alfisol, Inceptisol, Mollisol and Vertisol and two organic matter matrices (FYM and Sludge). The developed method was found as rapid, reproducible, non-destructive and accurate method for estimation of all three-density groups of MPs (Low, Medium and High) with a prediction accuracy ranging from 1.9 g MPs/kg soil (Vertisol) to 3.7 g MPs/kg soil (Alfisol). Two different regression models [Partial Least Square Regression (PLSR) and Principal Component Regression (PCR)] were assessed and PLSR was found to provide better information in terms of prediction accuracy and minimum quantification limit (MQL). However, PCR performed better for organic matter matrices than PLSR. The method avoids any complicated sample preparation steps except drying and sieving thus saving time and acquisition of reflectance spectrum for single sample is possible within 18 s. Owing to have the minimum quantification limit ranging from 1.9-3.7 g/kg soil, the vis-NIR based method is perfectly suitable for estimation of MPs in soil samples collected from plastic pollution hotspots like landfill sites, regular based sludge amended farm soils. Additionally, the method can be adapted by small scale compost industries for assessing MPs load in product like city compost which are applied at agricultural fields and will be helpful in quantifying possible MPs at the sources itself.

4.
Environ Sci Pollut Res Int ; 30(55): 116804-116830, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36513900

RESUMEN

The Hindon River is the main tributary of river Yamuna and it is a significant source of surface water, which flows through the major cities of western Uttar Pradesh, India. The indiscriminate development of industries and urbanization along river basin coupled with rapid population growths contribute various amounts of pollutant in the river. Therefore, the present study was conducted to assess the spatial-temporal variability of river water quality (seventeen physicochemical parameters and eight heavy metals) during pre- and post-monsoon seasons for 5 years data at 19 sampling sites along the river stretch. Indices associated with water quality and heavy metals were computed to scale the accurate state of risk associated to its use for drinking and irrigation. During the pre- and post-monsoon seasons, only four sites were found having safe water quality index (WQI) values. The mean heavy metal concentrations are found in order of Zn > Fe > Pb > Cu > Cr > Cd > Ni > Mn. Considering the spatial and temporal distribution, the study benchmarked the water quality of Hindon River for priority attention.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Calidad del Agua , Monitoreo del Ambiente , Ríos , Benchmarking , Contaminantes Químicos del Agua/análisis , India , Metales Pesados/análisis , Medición de Riesgo
5.
Environ Sci Pollut Res Int ; 29(33): 50427-50442, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35230634

RESUMEN

Air pollutants adversely affect the physiological, biochemical parameters, and productivity of the crops, but scarce and meager reports are available to know the certain impact of air pollution on crops. The aim of the present study was to assess environmental impact of air pollutants on biochemical parameters of the crops by monitoring two important indicators, i.e., Air Pollution Tolerance Index (APTI) and Anticipated Performance Index (API). These two indicators provide the sensitivity and the tolerance level of the crops towards the air pollutants. Seven different crops were selected in four different locations in the vicinity of a thermal power plant. The results depicted the maximum aerial particulate matter deposition on crop canopy (ADCC) in barley (Hordeum vulgare 2.15 mg/cm2) and wheat (Triticum aestivum 2.21 mg/cm2). The maximum APTI value was found in berseem (Trifolium alexandrinum, 9.45 and 11.44) during the first and second year of study, respectively. Results indicated that all crops were sensitive to air pollution in the selected area, but berseem (Trifolium alexandrinum) was less sensitive in comparison to other crops. API value showed that wheat (Triticum aestivum) and rice (Oryza sativa) were best-suited crops in the selected study area as compared to other crops. It has been found in the study that the API and APTI are two important indicators for the selection of crops in the severe air polluting area.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Productos Agrícolas , Ambiente , Monitoreo del Ambiente , Hojas de la Planta/química
6.
Environ Toxicol Pharmacol ; 92: 103863, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35421594

RESUMEN

A total of six vegetables (S. tuberosum, D. carota, S. lycopersicum, A. esculentus, S. oleracea and B. juncea) were analysed for five heavy metals (As, Cd, Cr, Hg, and Pb) to evaluate the contamination load in vegetables collected from five cultivated and two market sites (n = 504) at Delhi, India. The irrigation water samples and soil samples (n = 180) were only collected from cultivated sites. The results showed that the concentration of heavy metals in soil and water samples were well below the permissible level except for Cd 0.001-0.013 µg g-1. Similarly, the concentration of Cd (>0.20 µg g-1) was detected higher in all investigated vegetables except for tomato. The evaluation index value was highest for spinach and lowest for tomato. The transfer factor values and metal pollution index was maximum in spinach and okra. Principal component analysis (PCA), Tukey's HSD (Honestly Significant Difference) test, and one-way and two-way ANOVA (Analysis of Variance) were also applied to statistically analyse the results.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Monitoreo del Ambiente/métodos , Contaminación de Alimentos/análisis , India , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Spinacia oleracea , Verduras , Agua
7.
Heliyon ; 7(8): e07850, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34485734

RESUMEN

Carbon fractions under different bamboo species viz., Bambusa balcooa, Bambusa bambos, Bambusa nutans, Dendrocalamus hamiltonii, Dendrocalamus asper and Dendrocalamus strictus were evaluated to understand the potential of these different bamboo species in soil rehabilitation in Himalayan foothills. The highest accumulation of the different carbon fractions likes very labile (6.12 mg g-1), less labile (2.55 mg g-1) and non-labile (11.40 mg g-1) was observed under D. hamiltonii, while highest labile fraction (3.17 mg g-1) was recorded under D. strictus. The highest active (8.85 mg g-1) and passive pool (13.95 mg g-1) were recorded under D. hamiltonii. Higher carbon management index (CMI) was obtained under D. hamiltonii (186.04) which was comparable with D. strictus (182.66) and B. nutans (179.24). Among all the six species, D. hamiltonii had the highest buildup of active and passive pool in both the soil depths. Bamboo plantations irrespective of the different species helped in enhancing the SOC fraction and enhanced C buildup in the soil in comparison to the open fallow land and holds potential in combating the problems of land degradation and soil rehabilitation.

8.
Sci Rep ; 11(1): 18664, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545161

RESUMEN

India produces around 19.0 million tonnes of tomatoes annually, which is insufficient to meet the ever-increasing demand. A big gap of tomato productivity (72.14 t ha-1) between India (24.66 t ha-1) and the USA (96.8 t ha-1) exist, which can be bridged by integrating trellis system of shoot training, shoot pruning, liquid fertilizers, farmyard manure, and mulching technologies. Therefore, the present experiment was conducted on tomato (cv. Himsona) during 2019-2020 at farmers' fields to improve tomato productivity and quality. There were five treatments laid in a randomized block design (RBD) with three replications; T1 [Farmer practice on the flatbed with RDF @ N120:P60:K60 + FYM @6.0 t ha-1 without mulch], T2 [T1 + Polythene mulch (50 microns)], T3 [Tomato plants grown on the raised bed with polythene mulch + FYM @ 8.0 t ha-1 + Single shoot trellis system + Side shoot pruning + Liquid Fertilizer (LF1-N19:P19:K19) @ 2.0 g l-1 for vegetative growth + Liquid Fertilizer (LF2-N0: P52: K34) @ 1.5 g l-1 for improving fruit quality], T4 [Tomato plants grown on the raised bed with polythene mulch + FYM @ 8.0 t ha-1 + Single shoot trellis system + Side shoot pruning + LF1 @ 4.0 g l-1 + LF2 @ 3.0 g l-1], and T5 [Tomato plants grown on the raised bed with polythene mulch + FYM @ 10.0 t ha-1 + Single shoot trellis system + Side shoot pruning + LF1 @ 6.0 g l-1 + LF2 @ 4.5 g l-1]. The results revealed that tomato plant grown on the raised beds with polythene mulch, shoot pruning, trellising, liquid fertilizers, and farmyard manure (i.e., T5) recorded higher shoot length, dry matter content, and tomato productivity by 20.75-141.21, 18.79-169.4, and 18.89-160.87% as compared to T4-T1 treatments, respectively. The T5 treatment also recorded the highest water productivity (28.39 kg m-3), improved fruit qualities, net return (10,751 USD ha-1), benefit-cost ratio (3.08), microbial population, and enzymatic activities as compared to other treatments. The ranking and hierarchical clustering of treatments confirmed the superiority of the T5 treatment over all other treatments.


Asunto(s)
Agricultura/métodos , Fertilizantes/análisis , Solanum lycopersicum/metabolismo , Carbono/análisis , Productos Agrícolas/crecimiento & desarrollo , Frutas/química , Frutas/crecimiento & desarrollo , Frutas/metabolismo , India , Solanum lycopersicum/crecimiento & desarrollo , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA