Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38929144

RESUMEN

Oxidative stress and apoptosis cell death are critical secondary damage mechanisms that lead to losing neighboring healthy tissue after cerebral ischemia. This study aims to characterize the type of interaction between dapsone (DDS) and cannabidiol (CBD) and its cytoprotective effect in an in vitro model of oxygen and glucose deprivation for 6 h followed by 24 h of reoxygenation (OGD/R), using the SH-SY5Y cell line. For the combined concentrations, an isobolographic study was designed to determine the optimal concentration-response combinations. Cell viability was evaluated by measuring the lactate dehydrogenase (LDH) release and 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assays. Also, the reactive oxygen species (ROS) and reduced glutathione (GSH) levels were analyzed as oxidative stress markers. Finally, caspase-3 activity was evaluated as a marker cell death by apoptosis. The results showed a decrease in cell viability, an increase in oxidant stress, and the activity of caspase-3 by the effect of OGD/R. Meanwhile, both DDS and CBD demonstrated antioxidant, antiapoptotic, and cytoprotective effects in a concentration-response manner. The isobolographic study indicated that the concentration of 2.5 µM of DDS plus 0.05 µM of CBD presented a synergistic effect so that in treatment, cell death due to OGD/R decreased. The findings indicate that DDS-CBD combined treatment may be a helpful therapy in cerebral ischemia with reperfusion.

2.
Brain Res ; 1803: 148227, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36592802

RESUMEN

BACKGROUND: Development of effective drugs for epilepsy are needed, as nearly 30 % of epileptic patients, are resistant to current treatments. This study is aimed to characterize the anticonvulsant effect of dapsone (DDS), in the kainic acid (KA)-induced Status Epilepticus (SE) by recording the brain metabolic activity with an [18F]FDG-PET analysis. METHODS: Wistar rats received KA (10 mg/kg, i.p., single dose) to produce sustained seizures. [18F]FDG-PET and electroencephalographic (EEG) studies were then performed. DDS or vehicle were administered 30 min before KA. [18F]FDG uptake and EEG were evaluated at baseline, 2 and 25 h after KA injection. Likewise, caspase-8, 3 hippocampal activities and Fluoro-Jade B neuronal degeneration and Hematoxylin-eosin staining were measured 25 h after KA. RESULTS: PET data evaluated at 2 h showed hyper-uptake of [18F]FDG in the control group, which was decreased by DDS. At 25 h, hypo-uptake was observed in the control group and higher values due to DDS effect. EEG spectral power was increased 2 h after KA administration in the control group during the generalized tonic-clonic seizures, which was reversed by DDS, correlated with [18F]FDG-PET uptake changes. The values of caspases-8 activity decreased 48 and 43 % vs control group in the groups treated with DDS (12.5 y 25 mg/kg respectively), likewise; caspase-3 activity diminished by 57 and 53 %. Fewer degenerated neurons were observed due to DDS treatments. CONCLUSIONS: This study pinpoints the anticonvulsant therapeutic potential of DDS. Given its safety and effectiveness, DDS may be a viable alternative for patients with drug-resistant epilepsy.


Asunto(s)
Epilepsia , Estado Epiléptico , Ratas , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Ácido Kaínico/farmacología , Fluorodesoxiglucosa F18/metabolismo , Dapsona/farmacología , Ratas Wistar , Estado Epiléptico/inducido químicamente , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/tratamiento farmacológico , Convulsiones/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo
3.
Neurotoxicology ; 82: 18-25, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127410

RESUMEN

1-Methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity produces cellular damage resembling that encountered in Parkinson's disease. The mechanisms of cellular death after MPP+ include the participation of oxidative stress in the loss of dopaminergic neurons. Among the mechanisms of defense against oxidative stress, several copper-dependent proteins have been implicated: Cu/Zn-SOD, ceruloplasmin, and metallothionein. Another important mechanism of damage, is MPP + interference with mitochondrial respiration. Both, oxidative stress and inhibition of mitochondrial respiration may trigger apoptosis in the neurons after MPP+. The aim of the present study was to characterize the time-course of apoptosis induced by MPP+ to determine if copper sulfate pretreatment is able to prevent the activation of caspases and decreased the neuronal apoptosis. MPP+ was microinjected into rat striatum using a stereotactic frame. The results showed increased activities of caspases 8, 9 and 3, between 72-120 hours after administration of MPP+, both in striatum and midbrain. After this study, we tested the effect of CuSO4 on MPP+ neurotoxicity, showing a diminution of the apoptotic damage induced by MPP+, decreased levels of enzymatic activity of caspases: 8 (-34 and -25 %), 9 (-25 and -42 %) and 3 (-40 and -29 %) in striatum and midbrain, respectively. Finally, we performed an immunohistochemical analysis, evidencing a decreased number of apoptotic cells in the groups pretreated with copper sulfate pretreatment compared to the control group. With these findings, it is concluded that pretreatment with copper sulfate may be a good alternative to prevent MPP+-induced apoptosis.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Apoptosis/efectos de los fármacos , Sulfato de Cobre/farmacología , Cuerpo Estriado/efectos de los fármacos , Mesencéfalo/efectos de los fármacos , 1-Metil-4-fenilpiridinio/antagonistas & inhibidores , Animales , Anexina A5/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Etiquetado Corte-Fin in Situ , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA