Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(1): 200-210, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38118446

RESUMEN

The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.


Asunto(s)
Proteínas de Unión al GTP , Microcefalia , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Animales , Humanos , Drosophila melanogaster/genética , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteínas de Drosophila/genética
2.
Proc Natl Acad Sci U S A ; 120(4): e2209983120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669109

RESUMEN

TMEM161B encodes an evolutionarily conserved widely expressed novel 8-pass transmembrane protein of unknown function in human. Here we identify TMEM161B homozygous hypomorphic missense variants in our recessive polymicrogyria (PMG) cohort. Patients carrying TMEM161B mutations exhibit striking neocortical PMG and intellectual disability. Tmem161b knockout mice fail to develop midline hemispheric cleavage, whereas knock-in of patient mutations and patient-derived brain organoids show defects in apical cell polarity and radial glial scaffolding. We found that TMEM161B modulates actin filopodia, functioning upstream of the Rho-GTPase CDC42. Our data link TMEM161B with human PMG, likely regulating radial glia apical polarity during neocortical development.


Asunto(s)
Neocórtex , Animales , Humanos , Ratones , Células Ependimogliales , Ratones Noqueados
3.
Genet Med ; : 101251, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39275948

RESUMEN

PURPOSE: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear. METHODS: We identified 105 affected individuals, including 39 previously reported cases, and systematically analysed detailed clinical and genetic data for all individuals. Additionally, we conducted knockdown experiments in neuronal cells to investigate the role of ACTL6B in ribosome biogenesis. RESULTS: Biallelic variants in ACTL6B are associated with severe-to-profound global developmental delay/intellectual disability (GDD/ID), infantile intractable seizures, absent speech, autistic features, dystonia, and increased lethality. De novo monoallelic variants result in moderate-to-severe GDD/ID, absent speech, and autistic features, while seizures and dystonia were less frequently observed. Dysmorphic facial features and brain abnormalities, including hypoplastic corpus callosum, parenchymal volume loss/atrophy, are common findings in both groups. We reveal that in the nucleolus, ACTL6B plays a crucial role in ribosome biogenesis, in particular in pre-rRNA processing. CONCLUSION: This study provides a comprehensive characterization of the clinical spectrum of both autosomal recessive and dominant forms of ACTL6B-associated disorders. It offers a comparative analysis of their respective phenotypes provides a plausible molecular explanation and suggests their inclusion within the expanding category of 'ribosomopathies'.

4.
Clin Genet ; 105(5): 510-522, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38221827

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of epilepsies characterized by early-onset, refractory seizures associated with developmental regression or impairment, with a heterogeneous genetic landscape including genes implicated in various pathways and mechanisms. We retrospectively studied the clinical and genetic data of patients with genetic DEE who presented at two tertiary centers in Egypt over a 10-year period. Exome sequencing was used for genetic testing. We report 74 patients from 63 unrelated Egyptian families, with a high rate of consanguinity (58%). The most common seizure type was generalized tonic-clonic (58%) and multiple seizure types were common (55%). The most common epilepsy syndrome was early infantile DEE (50%). All patients showed variable degrees of developmental impairment. Microcephaly, hypotonia, ophthalmological involvement and neuroimaging abnormalities were common. Eighteen novel variants were identified and the phenotypes of five DEE genes were expanded with novel phenotype-genotype associations. Obtaining a genetic diagnosis had implications on epilepsy management in 17 patients with variants in 12 genes. In this study, we expand the phenotype and genotype spectrum of DEE in a large single ethnic cohort of patients. Reaching a genetic diagnosis guided precision management of epilepsy in a significant proportion of patients.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Niño , Humanos , Egipto/epidemiología , Estudios Retrospectivos , Epilepsia/diagnóstico , Convulsiones/genética , Convulsiones/complicaciones , Fenotipo
5.
Am J Med Genet A ; 194(2): 226-232, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798908

RESUMEN

Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) and PEHO-like syndromes are very rare infantile disorders characterized by profound intellectual disability, hypotonia, convulsions, optic, and progressive brain atrophy. Many causative genes for PEHO and PEHO-like syndromes have been identified including CCDC88A. So far, only five patients from two unrelated families with biallelic CCDC88A variants have been reported in the literature. Herein, we describe a new family from Egypt with a lethal epileptic encephalopathy. Our patient was the youngest child born to a highly consanguineous couple and had a family history of five deceased sibs with the same condition. She presented with postnatal microcephaly, poor visual responsiveness, and epilepsy. Her brain MRI showed abnormal cortical gyration with failure of opercularization of the insula, hypogenesis of corpus callosum, colpocephaly, reduced white matter, hypoplastic vermis, and brain stem. Whole exome sequencing identified a new homozygous frameshift variant in CCDC88A gene (c.1795_1798delACAA, p.Thr599ValfsTer4). Our study presents the third reported family with this extremely rare disorder. We also reviewed all described cases to better refine the phenotypic spectrum associated with biallelic loss of function variants in the CCDC88A gene.


Asunto(s)
Edema Encefálico , Enfermedades Neurodegenerativas , Atrofia Óptica , Espasmos Infantiles , Humanos , Niño , Femenino , Espasmos Infantiles/genética , Edema Encefálico/genética , Atrofia Óptica/genética , Síndrome , Proteínas de Microfilamentos/genética , Proteínas de Transporte Vesicular/genética
6.
Am J Hum Genet ; 107(5): 977-988, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33058759

RESUMEN

PRKACA and PRKACB code for two catalytic subunits (Cα and Cß) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cß subunits of PKA during human development.


Asunto(s)
Anomalías Múltiples/genética , Disfunción Cognitiva/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Dedos/anomalías , Mutación de Línea Germinal , Defectos de los Tabiques Cardíacos/genética , Polidactilia/genética , Dedos del Pie/anomalías , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/patología , Adolescente , Adulto , Animales , Secuencia de Bases , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/patología , AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/química , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/deficiencia , Femenino , Dedos/patología , Regulación del Desarrollo de la Expresión Génica , Defectos de los Tabiques Cardíacos/diagnóstico , Defectos de los Tabiques Cardíacos/patología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Holoenzimas/química , Holoenzimas/deficiencia , Holoenzimas/genética , Humanos , Recién Nacido , Masculino , Ratones , Modelos Moleculares , Mosaicismo , Células 3T3 NIH , Linaje , Polidactilia/diagnóstico , Polidactilia/patología , Estructura Secundaria de Proteína , Dedos del Pie/patología
7.
Clin Genet ; 104(2): 238-244, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37055917

RESUMEN

This study presents 46 patients from 23 unrelated Egyptian families with ALS2-related disorders without evidence of lower motor neuron involvement. Age at onset ranged from 10 months to 2.5 years, featuring progressive upper motor neuron signs. Detailed clinical phenotypes demonstrated inter- and intrafamilial variability. We identified 16 homozygous disease-causing ALS2 variants; sorted as splice-site, missense, frameshift, nonsense and in-frame in eight, seven, four, three, and one families, respectively. Seven of these variants were novel, expanding the mutational spectrum of the ALS2 gene. As expected, clinical severity was positively correlated with disease onset (p = 0.004). This work provides clinical and molecular profiles of a large single ethnic cohort of patients with ALS2 mutations, and suggests that infantile ascending hereditary spastic paralysis (IAHSP) and juvenile primary lateral sclerosis (JPLS) are belonged to one entity with no phenotype-genotype correlation.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Humanos , Egipto/epidemiología , Factores de Intercambio de Guanina Nucleótido/genética , Análisis Mutacional de ADN , Mutación
8.
Acta Neuropathol ; 146(2): 353-368, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37119330

RESUMEN

Hereditary spastic paraplegias (HSP) are rare, inherited neurodegenerative or neurodevelopmental disorders that mainly present with lower limb spasticity and muscle weakness due to motor neuron dysfunction. Whole genome sequencing identified bi-allelic truncating variants in AMFR, encoding a RING-H2 finger E3 ubiquitin ligase anchored at the membrane of the endoplasmic reticulum (ER), in two previously genetically unexplained HSP-affected siblings. Subsequently, international collaboration recognized additional HSP-affected individuals with similar bi-allelic truncating AMFR variants, resulting in a cohort of 20 individuals from 8 unrelated, consanguineous families. Variants segregated with a phenotype of mainly pure but also complex HSP consisting of global developmental delay, mild intellectual disability, motor dysfunction, and progressive spasticity. Patient-derived fibroblasts, neural stem cells (NSCs), and in vivo zebrafish modeling were used to investigate pathomechanisms, including initial preclinical therapy assessment. The absence of AMFR disturbs lipid homeostasis, causing lipid droplet accumulation in NSCs and patient-derived fibroblasts which is rescued upon AMFR re-expression. Electron microscopy indicates ER morphology alterations in the absence of AMFR. Similar findings are seen in amfra-/- zebrafish larvae, in addition to altered touch-evoked escape response and defects in motor neuron branching, phenocopying the HSP observed in patients. Interestingly, administration of FDA-approved statins improves touch-evoked escape response and motor neuron branching defects in amfra-/- zebrafish larvae, suggesting potential therapeutic implications. Our genetic and functional studies identify bi-allelic truncating variants in AMFR as a cause of a novel autosomal recessive HSP by altering lipid metabolism, which may potentially be therapeutically modulated using precision medicine with statins.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Paraplejía Espástica Hereditaria , Animales , Humanos , Paraplejía Espástica Hereditaria/tratamiento farmacológico , Paraplejía Espástica Hereditaria/genética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Pez Cebra , Mutación , Neuronas Motoras , Receptores del Factor Autocrino de Motilidad/genética
9.
Mol Biol Rep ; 50(8): 6373-6379, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37318662

RESUMEN

BACKGROUND: Congenital muscular dystrophies (CMDs) result from genetically inherited defects in the biosynthesis and/or the posttranslational modification (glycosylation) of laminin-α2 and α-dystroglycan (α-DG), respectively. The interaction between both proteins is responsible for the stability and integrity of the muscle cell. We aimed to study the expression profiles of both proteins in two classes of CMDs. SUBJECTS AND METHODS: Whole-exome sequencing (WES) was done for four patients with neuromuscular manifestations. The expression of core α-DG and laminin-α2 subunit in skin fibroblasts and MCF-7 cells was assessed by western blot. RESULTS: WES revealed two cases with nonsense mutations; c.2938G > T and c.4348 C > T, in LAMA2 encodes laminin-α2. It revealed also two cases with mutations in POMGNT1 encode protein O-mannose beta-1,2-N-acetylglucosaminyltransferase mutations. One patient had a missense mutation c.1325G > A, and the other had a synonymous variant c.636 C > T. Immunodetection of core α-DG in skin fibroblasts revealed the expression of truncated forms of core α-DG accompanied by reduced expression of laminin-α2 in POMGNT1-CMD patients and one patient with LAMA2-CMD. One patient with LAMA2-CMD had overexpression of laminin-α2 and expression of a low level of an abnormal form of increased molecular weight core α-DG. MCF-7 cells showed truncated forms of core α-CDG with an absent laminin-α2. CONCLUSION: A correlation between the expression pattern/level of core α-DG and laminin-α2 could be found in patients with different types of CMD.


Asunto(s)
Laminina , Distrofias Musculares , Humanos , Distroglicanos/genética , Distroglicanos/metabolismo , Fibroblastos/metabolismo , Laminina/genética , Distrofias Musculares/genética , Distrofias Musculares/complicaciones , Distrofias Musculares/metabolismo , Mutación/genética
10.
Ann Intern Med ; 175(2): 191-197, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34871057

RESUMEN

BACKGROUND: Thiamine supplementation is recommended for patients with alcohol use disorder (AUD). The authors hypothesize that critically ill patients with AUD are commonly not given thiamine supplementation. OBJECTIVE: To describe thiamine supplementation incidence in patients with AUD and various critical illnesses (alcohol withdrawal, septic shock, traumatic brain injury [TBI], and diabetic ketoacidosis [DKA]) in the United States. DESIGN: Retrospective observational study. SETTING: Cerner Health Facts database. PATIENTS: Adult patients with a diagnosis of AUD who were admitted to the intensive care unit with alcohol withdrawal, septic shock, TBI, or DKA between 2010 and 2017. MEASUREMENTS: Incidence and predicted probability of thiamine supplementation in alcohol withdrawal and other critical illnesses. RESULTS: The study included 14 998 patients with AUD. Mean age was 52.2 years, 77% of participants were male, and in-hospital mortality was 9%. Overall, 7689 patients (51%) received thiamine supplementation. The incidence of thiamine supplementation was 59% for alcohol withdrawal, 26% for septic shock, 41% for TBI, and 24% for DKA. Most of those receiving thiamine (n = 3957 [52%]) received it within 12 hours of presentation in the emergency department. The predominant route of thiamine administration was enteral (n = 3119 [41%]). LIMITATION: Specific dosing and duration were not completely captured. CONCLUSION: Thiamine supplementation was not provided to almost half of all patients with AUD, raising a quality-of-care issue for this cohort. Supplementation was numerically less frequent in patients with septic shock, DKA, or TBI than in those with alcohol withdrawal. These data will be important for the design of quality improvement studies in critically ill patients with AUD. PRIMARY FUNDING SOURCE: National Institutes of Health.


Asunto(s)
Alcoholismo , Choque Séptico , Síndrome de Abstinencia a Sustancias , Adulto , Alcoholismo/complicaciones , Enfermedad Crítica , Suplementos Dietéticos , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Choque Séptico/tratamiento farmacológico , Tiamina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA