Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nanomedicine ; 59: 102753, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734039

RESUMEN

In this study, we have considered four types of nanoparticles (NPs): polylactic acid (PLA), gold (Au), calcium carbonate (CaCO3), and silica (SiO2) with similar sizes (TEM: 50-110 nm and DLS: 110-140 nm) to examine their passive accumulation in three different tumors: colon (CT26), melanoma (B16-F10), and breast (4T1) cancers. Our results demonstrate that each tumor model showed a different accumulation of NPs, in the following order: CT26 > B16-F10 > 4T1. The Au and PLA NPs were evidently characterized by a higher delivery efficiency in case of CT26 tumors compared to CaCO3 and SiO2 NPs. The Au NPs demonstrated the highest accumulation in B16-F10 cells compared to other NPs. These results were verified using SPECT, ex vivo fluorescence bioimaging, direct radiometry and histological analysis. Thus, this work contributes to new knowledge in passive tumor targeting of NPs and can be used for the development of new strategies for delivery of bioactive compounds.


Asunto(s)
Oro , Nanopartículas , Animales , Ratones , Nanopartículas/química , Oro/química , Dióxido de Silicio/química , Poliésteres/química , Portadores de Fármacos/química , Línea Celular Tumoral , Carbonato de Calcio/química , Femenino , Humanos , Sistemas de Liberación de Medicamentos , Ratones Endogámicos BALB C , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Melanoma Experimental/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo
2.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055120

RESUMEN

In this paper, we describe the synthesis of multilayer nanoparticles as a platform for the diagnosis and treatment of ischemic injuries. The platform is based on magnetite (MNP) and silica (SNP) nanoparticles, while quinacrine is used as an anti-ischemic agent. The synthesis includes the surface modification of nanoparticles with (3-glycidyloxypropyl)trimethoxysilane (GPMS), the immobilization of quinacrine, and the formation of a chitosan coating, which is used to fix the fluorophore indocyanine green (ICG) and colloidal quantum dots AgInS2/ZnS (CQDs), which serve as secondary radiation sources. The potential theranostic platform was studied in laboratory animals.


Asunto(s)
Isquemia/diagnóstico , Puntos Cuánticos/química , Quinacrina/síntesis química , Dióxido de Silicio/química , Quitosano/química , Diagnóstico Precoz , Colorantes Fluorescentes/química , Humanos , Isquemia/terapia , Nanopartículas de Magnetita/química , Estructura Molecular , Nanopartículas , Medicina de Precisión , Quinacrina/química , Nanomedicina Teranóstica
3.
Molecules ; 27(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432101

RESUMEN

CQD/PEDOT: PSS composites were prepared via the hydrothermal method from glucose carbon quantum dots (CQDs) and an aqueous solution of PEDOT:PSS conducting polymer and their electrical and optical properties were investigated. The morphology and structure of these samples were investigated by AFM, SEM, EDX, and EBSD. It was found that the CQDs and CQD/PEDOT:PSS composites had a globular structure with globule sizes of ~50-300 nm depending on the concentration of PEDOT:PSS in these composites. The temperature dependence of the resistivity was obtained for the CQD/PEDOT:PSS (3%, 5%, 50%) composites, which had a weak activation character. The charge transport mechanism was discussed. The dependence of the resistivity on the storage time of the CQD/PEDOT:PSS (3%, 5%, 50%) composites and pure PEDOT:PSS was obtained. It was noted that mixing CQDs with PEDOT:PSS allowed us to obtain better electrical and optical properties than pure CQDs. CQD/PEDOT: PSS (3%, 5%, 50%) composites are more conductive composites than pure CQDs, and the absorbance spectra of CQD/PEDOT:PSS composites are a synergistic effect of interaction between CQDs and PEDOT:PSS. We also note the better stability of the CQD/PEDOT:PSS (50%) composite than the pure PEDOT:PSS film. CQD/PEDOT: PSS (50%) composite is promising for use as stable hole transport layers in devices of flexible organic electronics.


Asunto(s)
Carbono , Puntos Cuánticos , Polímeros , Electricidad , Conductividad Eléctrica
4.
Biomed Opt Express ; 15(2): 818-833, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38404317

RESUMEN

The post-ischemic no-reflow phenomenon after primary percutaneous coronary intervention (PCI) is observed in more than half of subjects and is defined as the absence or marked slowing of distal coronary blood flow despite removal of the arterial occlusion. To visualize no-reflow in experimental studies, the fluorescent dye thioflavin S (ThS) is often used, which allows for the estimation of the size of microvascular obstruction by staining the endothelial lining of vessels. Based on the ability of indocyanine green (ICG) to be retained in tissues with increased vascular permeability, we proposed the possibility of using it to assess not only the severity of microvascular obstruction but also the degree of vascular permeability in the zone of myocardial infarction. The aim of our study was to investigate the possibility of using ICG to visualize no-reflow zones after ischemia-reperfusion injury of rat myocardium. Using dual ICG and ThS staining and the FLUM multispectral fluorescence organoscope, we recorded ICG and ThS fluorescence within the zone of myocardial necrosis, identifying ICG-negative zones whose size correlated with the size of the no-reflow zones detected by ThS. It is also shown that the contrast change between the no-reflow zone and nonischemic myocardium reflects the severity of blood stasis, indicating that ICG-negative zones are no-reflow zones. The described method can be an addition or alternative to the traditional method of measuring the size of no-reflow zones in the experiment.

5.
Eur Heart J Case Rep ; 6(4): ytac171, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35497388

RESUMEN

Background: Coronary artery anomalies (CAAs) are congenital disorders associated with variable manifestations and pathophysiological mechanisms. Anomalies can be asymptomatic or cause chest pain, myocardial infarction, or even sudden cardiac death. Case summary: We describe a 34-year-old man with a history of a single episode of chest pain. An ectopic origin on the part of the left circumflex (LCX) coronary artery from the proximal right coronary artery (RCA) was evident upon coronary computed tomography angiography. A positron emission tomography perfusion study revealed a stress-induced perfusion defect in the anomalous LCX territory (infero-posterior wall). The patient experienced dyspnoea and ST-segment depression in electrocardiography, suggestive of myocardial ischaemia during the maximal bicycle ergometer stress test. No mechanical compression or stenosis was seen upon invasive coronary angiography. The left ventricular perfusion normalized after the initiation of beta-blocker medication. Discussion: Patients with CAAs especially benefit from a multimodality assessment of the vascular territories. In our case, the myocardial perfusion of the infero-posterior wall normalized after treatment with beta-blockers. This may be due to increased coronary vasodilation capacity and myocardial flow reserve, as well as reduced oxygen consumption. Beta-blockers may represent a viable option in low-symptomatic CAA patients with perfusion defect and no ostial stenosis or compression.

6.
Materials (Basel) ; 15(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35683129

RESUMEN

Various gadolinium compounds have been proposed as contrasting agents for magnetic resonance imaging (MRI). In this study, we suggested a new synthesis method of gadolinium ferrate/trigadolinium pentairon(III) oxide nanoparticles (GF/TPO NPs). The specific surface area of gadolinium ferrate (GdFeO3) and trigadolinium pentairon(III) oxide (Gd3Fe5O12) nanoparticles was equal to 42 and 66 m2/g, respectively. The X-ray diffraction analysis confirmed that the synthesized substances were GdFeO3 and Gd3Fe5O12. The gadolinium content in the samples was close to the theoretically calculated value. The free gadolinium content was negligible. Biodistribution of the GF/TPO NPs was studied in rats by fluorescent imaging and Fe2+/Fe3+ quantification demonstrating predominant accumulation in such organs as lung, kidney, and liver. We showed in the in vivo rat model of myocardial ischemia-reperfusion injury that GF/TPO NPs are able to target the area of myocardial infarction as evidenced by the significantly greater level of fluorescence. In perspective, the use of fluorescently labeled GF/TPO NPs in multimodal imaging may provide basis for high-resolution 3D reconstruction of the infarcted heart, thereby serving as unique theranostic platform.

7.
Int J Nanomedicine ; 16: 5651-5664, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447247

RESUMEN

BACKGROUND: A promising approach to solve the problem of cytostatic toxicity is targeted drug transport using magnetic nanoparticles (MNPs). PURPOSE: To use calculation to determine the optimal characteristics of the magnetic field for controlling MNPs in the body, and to evaluate the efficiency of magnetically controlled delivery of MNPs in vitro and in vivo to a tumour site in mice. MATERIAL AND METHODS: For the in vitro study, reference MNPs were used, while for in vivo studies, MNPs coated in polylactide including fluorescent indocyanine (MNPs-ICG) were used. The in vivo luminescence intensity study was performed in mice with tumours, with and without of a magnetic field at the sites of interest. The studies were performed on a hydrodynamic stand developed at the Institute of Experimental Medicine of the Almazov National Medical Research Centre of the Ministry of Health of Russia. RESULTS: The use of neodymium magnets facilitated selective accumulation of MNPs. One minute after the administration of MNPs-ICG to mice with a tumour, MNPs-ICG predominantly accumulated in the liver, in the absence and presence of a magnetic field, which indicates its metabolic pathway. The intensity of the fluorescence in the animals' livers did not change over time, although an increase in fluorescence in the tumour was observed in the presence of a magnetic field. CONCLUSION: This type of MNP, used in combination with a magnetic field of calculated strength, can form the basis for the development of magnetically controlled transport of cytostatic drugs into tumour tissue.


Asunto(s)
Citostáticos , Nanopartículas de Magnetita , Animales , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Hierro , Magnetismo , Ratones
8.
Sci Rep ; 11(1): 23888, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903800

RESUMEN

Bariatric surgery (BS) improves outcomes in patients with myocardial infarction (MI). Here we tested the hypothesis that BS-mediated reduction in fatal MI could be attributed to its infarct-limiting effect. Wistar rats were randomized into five groups: control (CON), sham (SHAM), Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy (SG), and ileotransposition (IT). Ten weeks later, animals were subjected to 30-min myocardial ischemia plus 120-min reperfusion. Infarct size (IS) and no-reflow area were determined histochemically. Fasting plasma levels of glucagon-like peptide-1 (GLP-1), leptin, ghrelin, and insulin were measured using ELISA. Compared with SHAM, RYGB and SG reduced IS by 22% (p = 0.011) and 10% (p = 0.027), and no-reflow by 38% (p = 0.01) and 32% (p = 0.004), respectively. IT failed to reduce IS and no-reflow. GLP-1 level was increased in the SG and RYGB groups compared with CON. In both the SG and RYGB, leptin level was decreased compared with CON and SHAM. In the SG group, ghrelin level was lower than that in the CON and SHAM. Insulin levels were not different between groups. In conclusion, RYGB and SG increased myocardial tolerance to ischemia-reperfusion injury of non-obese, non-diabetic rats, and their infarct-limiting effect is associated with decreased leptin and ghrelin levels and increased GLP-1 level.


Asunto(s)
Gastrectomía/métodos , Derivación Gástrica/métodos , Derivación Yeyunoileal/métodos , Daño por Reperfusión Miocárdica/prevención & control , Procedimientos Quirúrgicos Profilácticos/métodos , Animales , Íleon/cirugía , Masculino , Ratas , Ratas Wistar
9.
Sci Rep ; 11(1): 21314, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716378

RESUMEN

The release of Hsp70 chaperone from tumor cells is found to trigger the full-scale anti-cancer immune response. Such release and the proper immune reaction can be induced by the delivery of recombinant Hsp70 to a tumor and we sought to explore how the endogenous Hsp70 can be transported to extracellular space leading to the burst of anti-cancer activity. Hsp70 transport mechanisms were studied by analyzing its intracellular tracks with Rab proteins as well as by using specific inhibitors of membrane domains. To study Hsp70 forms released from cells we employed the assay consisting of two affinity chromatography methods. Hsp70 content in culture medium and extracellular vesicles (EVs) was measured with the aid of ELISA. The properties and composition of EVs were assessed using nanoparticle tracking analysis and immunoblotting. The activity of immune cells was studied using an assay of cytotoxic lymphocytes, and for in vivo studies we employed methods of affinity separation of lymphocyte fractions. Analyzing B16 melanoma cells treated with recombinant Hsp70 we found that the chaperone triggered extracellular transport of its endogenous analog in soluble and enclosed in EVs forms; both species efficiently penetrated adjacent cells and this secondary transport was corroborated with the strong increase of Natural Killer (NK) cell toxicity towards melanoma. When B16 and CT-26 colon cancer cells before their injection in animals were treated with Hsp70-enriched EVs, a powerful anti-cancer effect was observed as shown by a two-fold reduction in tumor growth rate and elevation of life span. We found that the immunomodulatory effect was due to the enhancement of the CD8-positive response and anti-tumor cytokine accumulation; supporting this there was no delay in CT-26 tumor growth when Hsp70-enriched EVs were grafted in nude mice. Importantly, pre-treatment of B16 cells with Hsp70-bearing EVs resulted in a decline of arginase-1-positive macrophages, showing no generation of tumor-associated macrophages. In conclusion, Hsp70-containing EVs generated by specifically treated cancer cells give a full-scale and effective pattern of anti-tumor immune responses.


Asunto(s)
Inmunidad Adaptativa , Vesículas Extracelulares , Proteínas HSP70 de Choque Térmico/farmacología , Animales , Carcinoma/inmunología , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Células HEK293 , Humanos , Células Asesinas Naturales/inmunología , Melanoma Experimental/inmunología , Ratones
10.
Life Sci ; 279: 119676, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34087285

RESUMEN

AIMS: The effects of three types of bariatric interventions on myocardial infarct size were tested in the rat model of type 2 diabetes mellitus (T2DM). We also evaluated the effects of bariatric surgery on no-reflow phenomenon and vascular dysfunction caused by T2DM. MAIN METHODS: Rats with T2DM were assigned into groups: without surgery, sham-operated, ileal transposition, Roux-en-Y gastric bypass, and sleeve gastrectomy. Oral glucose tolerance, glucagon-like peptide-1, and insulin levels were measured. Six weeks after surgery, the animals were subjected to myocardial ischemia-reperfusion followed by histochemical determination of infarct size (IS), no-reflow zone, and blood stasis area size. Vascular dysfunction was characterized using wire myography. KEY FINDINGS: All bariatric surgery types caused significant reductions in animal body weight and resulted in T2DM compensation. All bariatric interventions partially normalized glucagon-like peptide-1 responses attenuated by T2DM. IS was significantly smaller in animals with T2DM. Bariatric surgery provided no additional IS limitation compared with T2DM alone. Bariatric surgeries reversed T2DM-induced enhanced contractile responses of the mesenteric artery to 5-hydroxytryptamine. Sleeve gastrectomy normalized decreased nitric oxide synthase contribution to the endothelium-dependent vasodilatation in T2DM. SIGNIFICANCE: T2DM resulted in a reduction of infarct size and no-reflow zone size. Bariatric surgery provided no additional infarct-limiting effect, but it normalized T2DM-induced augmented vascular contractility and reversed decreased contribution of nitric oxide to endothelium-dependent vasodilatation typical of T2DM. All taken together, we suggest that this type of surgery may have a beneficial effect on T2DM-induced cardiovascular diseases.


Asunto(s)
Cirugía Bariátrica/métodos , Diabetes Mellitus Experimental/cirugía , Diabetes Mellitus Tipo 2/cirugía , Angiopatías Diabéticas/prevención & control , Derivación Gástrica/métodos , Infarto del Miocardio/prevención & control , Animales , Glucemia/análisis , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/patología , Péptido 1 Similar al Glucagón/análisis , Masculino , Infarto del Miocardio/etiología , Infarto del Miocardio/patología , Ratas , Ratas Wistar
11.
Nanomaterials (Basel) ; 10(4)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340313

RESUMEN

: The effect of unmodified chitosan nanoparticles with a size of ~100 nm and a weakly positive charge on blood coagulation, metabolic activity of cultured cardiomyocytes, general toxicity, biodistribution, and reactive changes in rat organs in response to their single intravenous administration at doses of 1, 2, and 4 mg/kg was studied. Chitosan nanoparticles (CNPs) have a small cytotoxic effect and have a weak antiplatelet and anticoagulant effect. Intravenous administration of CNPs does not cause significant hemodynamic changes, and 30 min after the CNPs administration, they mainly accumulate in the liver and lungs, without causing hemolysis and leukocytosis. The toxicity of chitosan nanoparticles was manifested in a dose-dependent short-term delay in weight gain with subsequent recovery, while in the 2-week observation period no signs of pain and distress were observed in rats. Granulomas found in the lungs and liver indicate slow biodegradation of chitosan nanoparticles. In general, the obtained results indicate a good tolerance of intravenous administration of an unmodified chitosan suspension in the studied dose range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA