Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurosci ; 40(45): 8746-8766, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33046553

RESUMEN

Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein critical for normal brain function, and both depletion and overexpression of MeCP2 lead to severe neurodevelopmental disease, Rett syndrome (RTT) and MECP2 multiplication disorder, respectively. However, the molecular mechanism by which abnormal MeCP2 dosage causes neuronal dysfunction remains unclear. As MeCP2 expression is nearly equivalent to that of core histones and because it binds DNA throughout the genome, one possible function of MeCP2 is to regulate the 3D structure of chromatin. Here, to examine whether and how MeCP2 levels impact chromatin structure, we used high-resolution confocal and electron microscopy and examined heterochromatic foci of neurons in mice. Using models of RTT and MECP2 triplication syndrome, we found that the heterochromatin structure was significantly affected by the alteration in MeCP2 levels. Analysis of mice expressing either MeCP2-R270X or MeCP2-G273X, which have nonsense mutations in the upstream and downstream regions of the AT-hook 2 domain, respectively, showed that the magnitude of heterochromatin changes was tightly correlated with the phenotypic severity. Postnatal alteration in MeCP2 levels also induced significant changes in the heterochromatin structure, which underscored importance of correct MeCP2 dosage in mature neurons. Finally, functional analysis of MeCP2-overexpressing mice showed that the behavioral and transcriptomic alterations in these mice correlated significantly with the MeCP2 levels and occurred in parallel with the heterochromatin changes. Taken together, our findings demonstrate the essential role of MeCP2 in regulating the 3D structure of neuronal chromatin, which may serve as a potential mechanism that drives pathogenesis of MeCP2-related disorders.SIGNIFICANCE STATEMENT Neuronal function is critically dependent on methyl-CpG binding protein 2 (MeCP2), a nuclear protein abundantly expressed in neurons. The importance of MeCP2 is underscored by the severe childhood neurologic disorders, Rett syndrome (RTT) and MECP2 multiplication disorders, which are caused by depletion and overabundance of MeCP2, respectively. To clarify the molecular function of MeCP2 and to understand the pathogenesis of MECP2-related disorders, we performed detailed structural analyses of neuronal nuclei by using mouse models and high-resolution microscopy. We show that the level of MeCP2 critically regulates 3D structure of heterochromatic foci, and this is mediated in part by the AT-hook 2 domain of MeCP2. Our results demonstrate that one primary function of MeCP2 is to regulate chromatin structure.


Asunto(s)
Cromatina/química , Proteína 2 de Unión a Metil-CpG , Neuronas/patología , Estructura Terciaria de Proteína/genética , Animales , Nucléolo Celular/genética , Nucléolo Celular/ultraestructura , Corteza Cerebral/patología , Corteza Cerebral/ultraestructura , Cromatina/ultraestructura , Codón sin Sentido/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Femenino , Histonas/metabolismo , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/ultraestructura , Unión Proteica , Células Piramidales/patología , Células Piramidales/ultraestructura , Transcriptoma/genética
2.
Eur J Neurosci ; 39(8): 1268-80, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24467251

RESUMEN

The formation of excitatory and inhibitory synapses must be tightly coordinated to establish functional neuronal circuitry during development. In the cerebellum, the formation of excitatory synapses between parallel fibers and Purkinje cells is strongly induced by Cbln1, which is released from parallel fibers and binds to the postsynaptic δ2 glutamate receptor (GluD2). However, Cbln1's role, if any, in inhibitory synapse formation has been unknown. Here, we show that Cbln1 downregulates the formation and function of inhibitory synapses between Purkinje cells and interneurons. Immunohistochemical analyses with an anti-vesicular GABA transporter antibody revealed an increased density of interneuron-Purkinje cell synapses in the cbln1-null cerebellum. Whole-cell patch-clamp recordings from Purkinje cells showed that both the amplitude and frequency of miniature inhibitory postsynaptic currents were increased in cbln1-null cerebellar slices. A 3-h incubation with recombinant Cbln1 reversed the increased amplitude of inhibitory currents in Purkinje cells in acutely prepared cbln1-null slices. Furthermore, an 8-day incubation with recombinant Cbln1 reversed the increased interneuron-Purkinje cell synapse density in cultured cbln1-null slices. In contrast, recombinant Cbln1 did not affect cerebellar slices from mice lacking both Cbln1 and GluD2. Finally, we found that tyrosine phosphorylation was upregulated in the cbln1-null cerebellum, and acute inhibition of Src-family kinases suppressed the increased inhibitory postsynaptic currents in cbln1-null Purkinje cells. These findings indicate that Cbln1-GluD2 signaling inhibits the number and function of inhibitory synapses, and shifts the excitatory-inhibitory balance towards excitation in Purkinje cells. Cbln1's effect on inhibitory synaptic transmission is probably mediated by a tyrosine kinase pathway.


Asunto(s)
Potenciales Postsinápticos Inhibidores , Proteínas del Tejido Nervioso/metabolismo , Precursores de Proteínas/metabolismo , Células de Purkinje/metabolismo , Sinapsis/metabolismo , Animales , Regulación hacia Abajo , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones , Potenciales Postsinápticos Miniatura , Proteínas del Tejido Nervioso/genética , Neurogénesis , Precursores de Proteínas/genética , Células de Purkinje/citología , Células de Purkinje/fisiología , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Sinapsis/fisiología , Familia-src Quinasas/metabolismo
3.
Front Neurol ; 11: 593554, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193060

RESUMEN

Rett Syndrome (RTT) is a neurodevelopmental disorder caused by loss of function of the transcriptional regulator Methyl-CpG-Binding Protein 2 (MeCP2). In addition to the characteristic loss of hand function and spoken language after the first year of life, people with RTT also have a variety of physiological and autonomic abnormalities including disrupted breathing rhythms characterized by bouts of hyperventilation and an increased frequency of apnea. These breathing abnormalities, that likely involve alterations in both the circuitry underlying respiratory pace making and those underlying breathing response to environmental stimuli, may underlie the sudden unexpected death seen in a significant fraction of people with RTT. In fact, mice lacking MeCP2 function exhibit abnormal breathing rate response to acute hypoxia and maintain a persistently elevated breathing rate rather than showing typical hypoxic ventilatory decline that can be observed among their wild-type littermates. Using genetic and pharmacological tools to better understand the course of this abnormal hypoxic breathing rate response and the neurons driving it, we learned that the abnormal hypoxic breathing response is acquired as the animals mature, and that MeCP2 function is required within excitatory, inhibitory, and modulatory populations for a normal hypoxic breathing rate response. Furthermore, mice lacking MeCP2 exhibit decreased hypoxia-induced neuronal activity within the nucleus tractus solitarius of the dorsal medulla. Overall, these data provide insight into the neurons driving the circuit dysfunction that leads to breathing abnormalities upon loss of MeCP2. The discovery that combined dysfunction across multiple neuronal populations contributes to breathing dysfunction may provide insight into sudden unexpected death in RTT.

4.
J Neurosci ; 28(23): 5920-30, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18524896

RESUMEN

Although many synapse-organizing molecules have been identified in vitro, their functions in mature neurons in vivo have been mostly unexplored. Cbln1, which belongs to the C1q/tumor necrosis factor superfamily, is the most recently identified protein involved in synapse formation in the mammalian CNS. In the cerebellum, Cbln1 is predominantly produced and secreted from granule cells; cbln1-null mice show ataxia and a severe reduction in the number of synapses between Purkinje cells and parallel fibers (PFs), the axon bundle of granule cells. Here, we show that application of recombinant Cbln1 specifically and reversibly induced PF synapse formation in dissociated cbln1-null Purkinje cells in culture. Cbln1 also rapidly induced electrophysiologically functional and ultrastructurally normal PF synapses in acutely prepared cbln1-null cerebellar slices. Furthermore, a single injection of recombinant Cbln1 rescued severe ataxia in adult cbln1-null mice in vivo by completely, but transiently, restoring PF synapses. Therefore, Cbln1 is a unique synapse organizer that is required not only for the normal development of PF-Purkinje cell synapses but also for their maintenance in the mature cerebellum both in vitro and in vivo. Furthermore, our results indicate that Cbln1 can also rapidly organize new synapses in adult cerebellum, implying its therapeutic potential for cerebellar ataxic disorders.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Proteínas del Tejido Nervioso/fisiología , Precursores de Proteínas/fisiología , Células de Purkinje/fisiología , Sinapsis/fisiología , Factores de Edad , Animales , Línea Celular , Células Cultivadas , Cerebelo/crecimiento & desarrollo , Cerebelo/ultraestructura , Potenciales Postsinápticos Excitadores/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/farmacología , Precursores de Proteínas/deficiencia , Precursores de Proteínas/genética , Precursores de Proteínas/farmacología , Células de Purkinje/metabolismo , Células de Purkinje/ultraestructura , Sinapsis/genética , Sinapsis/ultraestructura
5.
Sci Rep ; 8(1): 6184, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670152

RESUMEN

Patients and rodents with cerebellar damage display ataxic gaits characterized by impaired coordination of limb movements. Here, gait ataxia in mice with a null mutation of the gene for the cerebellin 1 precursor protein (cbln1-null mice) was investigated by kinematic analysis of hindlimb movements during locomotion. The Cbln1 protein is predominately produced and secreted from cerebellar granule cells. The cerebellum of cbln1-null mice is characterized by an 80% reduction in the number of parallel fiber-Purkinje cell synapses compared with wild-type mice. Our analyses identified prominent differences in the temporal parameters of locomotion between cbln1-null and wild-type mice. The cbln1-null mice displayed abnormal hindlimb movements that were characterized by excessive toe elevation during the swing phase, and by severe hyperflexion of the ankles and knees. When recombinant Cbln1 protein was injected into the cerebellum of cbln1-null mice, the step cycle and stance phase durations increased toward those of wild-type mice, and the angular excursions of the knee during a cycle period showed a much closer agreement with those of wild-type mice. These findings suggest that dysfunction of the parallel fiber-Purkinje cell synapses might underlie the impairment of hindlimb movements during locomotion in cbln1-null mice.


Asunto(s)
Ataxia Cerebelosa/fisiopatología , Cerebelo/efectos de los fármacos , Cerebelo/fisiopatología , Marcha/efectos de los fármacos , Proteínas del Tejido Nervioso/administración & dosificación , Precursores de Proteínas/administración & dosificación , Animales , Ataxia Cerebelosa/tratamiento farmacológico , Ataxia Cerebelosa/etiología , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Inyecciones , Locomoción/efectos de los fármacos , Ratones , Ratones Noqueados , Fenotipo , Resultado del Tratamiento
6.
Nat Neurosci ; 21(6): 794-798, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29802390

RESUMEN

Previous studies suggested that MeCP2 competes with linker histone H1, but this hypothesis has never been tested in vivo. Here, we performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) of Flag-tagged-H1.0 in mouse forebrain excitatory neurons. Unexpectedly, Flag-H1.0 and MeCP2 occupied similar genomic regions and the Flag-H1.0 binding was not changed upon MeCP2 depletion. Furthermore, mild overexpression of H1.0 did not alter MeCP2 binding, suggesting that the functional binding of MeCP2 and H1.0 are largely independent.


Asunto(s)
Histonas/genética , Proteína 2 de Unión a Metil-CpG/genética , Animales , Núcleo Celular/química , Núcleo Celular/genética , Inmunoprecipitación de Cromatina , Metilación de ADN , Genoma , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Prosencéfalo/citología , Prosencéfalo/metabolismo , Unión Proteica
7.
Elife ; 52016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27328321

RESUMEN

The postnatal neurodevelopmental disorder Rett syndrome, caused by mutations in MECP2, produces a diverse array of symptoms, including loss of language, motor, and social skills and the development of hand stereotypies, anxiety, tremor, ataxia, respiratory dysrhythmias, and seizures. Surprisingly, despite the diversity of these features, we have found that deleting Mecp2 only from GABAergic inhibitory neurons in mice replicates most of this phenotype. Here we show that genetically restoring Mecp2 expression only in GABAergic neurons of male Mecp2 null mice enhanced inhibitory signaling, extended lifespan, and rescued ataxia, apraxia, and social abnormalities but did not rescue tremor or anxiety. Female Mecp2(+/-) mice showed a less dramatic but still substantial rescue. These findings highlight the critical regulatory role of GABAergic neurons in certain behaviors and suggest that modulating the excitatory/inhibitory balance through GABAergic neurons could prove a viable therapeutic option in Rett syndrome.


Asunto(s)
Neuronas GABAérgicas/fisiología , Expresión Génica , Proteína 2 de Unión a Metil-CpG/biosíntesis , Síndrome de Rett/genética , Síndrome de Rett/patología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados
8.
Neuron ; 91(4): 739-747, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27499081

RESUMEN

Loss- and gain-of-function mutations in methyl-CpG-binding protein 2 (MECP2) underlie two distinct neurological syndromes with strikingly similar features, but the synaptic and circuit-level changes mediating these shared features are undefined. Here we report three novel signs of neural circuit dysfunction in three mouse models of MECP2 disorders (constitutive Mecp2 null, mosaic Mecp2(+/-), and MECP2 duplication): abnormally elevated synchrony in the firing activity of hippocampal CA1 pyramidal neurons, an impaired homeostatic response to perturbations of excitatory-inhibitory balance, and decreased excitatory synaptic response in inhibitory neurons. Conditional mutagenesis studies revealed that MeCP2 dysfunction in excitatory neurons mediated elevated synchrony at baseline, while MeCP2 dysfunction in inhibitory neurons increased susceptibility to hypersynchronization in response to perturbations. Chronic forniceal deep brain stimulation (DBS), recently shown to rescue hippocampus-dependent learning and memory in Mecp2(+/-) (Rett) mice, also rescued all three features of hippocampal circuit dysfunction in these mice.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Estimulación Encefálica Profunda , Fórnix/fisiología , Proteína 2 de Unión a Metil-CpG/fisiología , Inhibición Neural/fisiología , Síndrome de Rett/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Duplicación de Gen/genética , Homeostasis/fisiología , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Mosaicismo , Mutación/fisiología , Células Piramidales/fisiología , Síndrome de Rett/genética
9.
Neuron ; 88(4): 651-8, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26590342

RESUMEN

Inhibitory neurons are critical for proper brain function, and their dysfunction is implicated in several disorders, including autism, schizophrenia, and Rett syndrome. These neurons are heterogeneous, and it is unclear which subtypes contribute to specific neurological phenotypes. We deleted Mecp2, the mouse homolog of the gene that causes Rett syndrome, from the two most populous subtypes, parvalbumin-positive (PV+) and somatostatin-positive (SOM+) neurons. Loss of MeCP2 partially impairs the affected neuron, allowing us to assess the function of each subtype without profound disruption of neuronal circuitry. We found that mice lacking MeCP2 in either PV+ or SOM+ neurons have distinct, non-overlapping neurological features: mice lacking MeCP2 in PV+ neurons developed motor, sensory, memory, and social deficits, whereas those lacking MeCP2 in SOM+ neurons exhibited seizures and stereotypies. Our findings indicate that PV+ and SOM+ neurons contribute complementary aspects of the Rett phenotype and may have modular roles in regulating specific behaviors.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Neuronas/metabolismo , Parvalbúminas/metabolismo , Síndrome de Rett/genética , Somatostatina/metabolismo , Animales , Conducta Animal , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Memoria , Ratones , Ratones Noqueados , Actividad Motora/genética , Fenotipo , Convulsiones/genética , Sensación/genética , Conducta Social , Conducta Estereotipada
10.
Neurosci Res ; 83: 64-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24607546

RESUMEN

Cbln1 is a glycoprotein which belongs to the C1q family. In the cerebellum, Cbln1 is produced and secreted from granule cells and works as a strong synapse organizer between Purkinje cells and parallel fibers, the axons of the granule cells. In this update article, we will describe the molecular mechanisms by which Cbln1 induces synapse formation and will review our findings on the axonal structural changes which occur specifically during this process. We will also describe our recent finding that Cbln1 has a suppressive role in inhibitory synapse formation between Purkinje cells and molecular layer interneurons. Our results have revealed that Cbln1 plays an essential role to establish parallel fiber-Purkinje cell synapses and to regulate balance between excitatory and inhibitory input on Purkinje cells.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Precursores de Proteínas/metabolismo , Células de Purkinje/metabolismo , Sinapsis/metabolismo , Animales , Humanos , Neurogénesis/fisiología
11.
Front Neural Circuits ; 7: 180, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24298240

RESUMEN

The delay eyeblink conditioning (EBC) is a cerebellum-dependent type of associative motor learning. However, the exact roles played by the various cerebellar synapses, as well as the underlying molecular mechanisms, remain to be determined. It is also unclear whether long-term potentiation (LTP) or long-term depression (LTD) at parallel fiber (PF)-Purkinje cell (PC) synapses is involved in EBC. In this study, to clarify the role of PF synapses in the delay EBC, we used mice in which a gene encoding Cbln1 was disrupted (cbln1(-/-) mice), which display severe reduction of PF-PC synapses. We showed that delay EBC was impaired in cbln1(-/-) mice. Although PF-LTD was impaired, PF-LTP was normally induced in cbln1(-/-) mice. A single recombinant Cbln1 injection to the cerebellar cortex in vivo completely, though transiently, restored the morphology and function of PF-PC synapses and delay EBC in cbln1(-/-) mice. Interestingly, the cbln1(-/-) mice retained the memory for at least 30 days, after the Cbln1 injection's effect on PF synapses had abated. Furthermore, delay EBC memory could be extinguished even after the Cbln1 injection's effect were lost. These results indicate that intact PF-PC synapses and PF-LTD, not PF-LTP, are necessary to acquire delay EBC in mice. In contrast, extracerebellar structures or remaining PF-PC synapses in cbln1(-/-) mice may be sufficient for the expression, maintenance, and extinction of its memory trace.


Asunto(s)
Cerebelo/fisiología , Condicionamiento Palpebral/fisiología , Proteínas del Tejido Nervioso/genética , Precursores de Proteínas/genética , Células de Purkinje/fisiología , Sinapsis/genética , Animales , Aprendizaje por Asociación/efectos de los fármacos , Aprendizaje por Asociación/fisiología , Cerebelo/efectos de los fármacos , Condicionamiento Palpebral/efectos de los fármacos , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/farmacología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Precursores de Proteínas/farmacología , Células de Purkinje/efectos de los fármacos , Proteínas Recombinantes/farmacología , Sinapsis/efectos de los fármacos
12.
Neuron ; 76(3): 549-64, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23141067

RESUMEN

Differentiation of pre- and postsynaptic sites is coordinated by reciprocal interaction across synaptic clefts. At parallel fiber (PF)-Purkinje cell (PC) synapses, dendritic spines are autonomously formed without PF influence. However, little is known about how presynaptic structural changes are induced and how they lead to differentiation of mature synapses. Here, we show that Cbln1 released from PFs induces dynamic structural changes in PFs by a mechanism that depends on postsynaptic glutamate receptor delta2 (GluD2) and presynaptic neurexin (Nrx). Time-lapse imaging in organotypic culture and ultrastructural analyses in vivo revealed that Nrx-Cbln1-GluD2 signaling induces PF protrusions that often formed circular structures and encapsulated PC spines. Such structural changes in PFs were associated with the accumulation of synaptic vesicles and GluD2, leading to formation of mature synapses. Thus, PF protrusions triggered by Nrx-Cbln1-GluD2 signaling may promote bidirectional maturation of PF-PC synapses by a positive feedback mechanism.


Asunto(s)
Axones/metabolismo , Cerebelo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Glutamato/metabolismo , Sinapsis/metabolismo , Animales , Proteínas de Unión al Calcio , Células Cultivadas , Cerebelo/citología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Terminales Presinápticos/metabolismo , Unión Proteica/fisiología , Transducción de Señal/fisiología
13.
Science ; 328(5976): 363-8, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20395510

RESUMEN

Cbln1, secreted from cerebellar granule cells, and the orphan glutamate receptor delta2 (GluD2), expressed by Purkinje cells, are essential for synapse integrity between these neurons in adult mice. Nevertheless, no endogenous binding partners for these molecules have been identified. We found that Cbln1 binds directly to the N-terminal domain of GluD2. GluD2 expression by postsynaptic cells, combined with exogenously applied Cbln1, was necessary and sufficient to induce new synapses in vitro and in the adult cerebellum in vivo. Further, beads coated with recombinant Cbln1 directly induced presynaptic differentiation and indirectly caused clustering of postsynaptic molecules via GluD2. These results indicate that the Cbln1-GluD2 complex is a unique synapse organizer that acts bidirectionally on both pre- and postsynaptic components.


Asunto(s)
Cerebelo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Precursores de Proteínas/metabolismo , Células de Purkinje/fisiología , Receptores de Glutamato/metabolismo , Sinapsis/fisiología , Animales , Sitios de Unión , Línea Celular , Células Cultivadas , Cerebelo/citología , Técnicas de Cocultivo , Potenciales Postsinápticos Excitadores , Humanos , Ligandos , Ratones , Terminales Presinápticos/fisiología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Células de Purkinje/metabolismo , Ratas , Receptores de Glutamato/química , Proteínas Recombinantes de Fusión/metabolismo , Membranas Sinápticas/metabolismo
14.
Eur J Neurosci ; 24(6): 1617-22, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17004925

RESUMEN

Mitogen-activated protein kinase (MAPK) cascade is essential for synaptic plasticity and learning. In the hippocampus, three different MAPK subfamilies, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAPK and c-Jun NH2-terminal protein kinase (JNK), selectively regulate activity-dependent glutamate receptor trafficking during long-term potentiation (LTP), long-term depression (LTD), and depotentiation after LTP, respectively. Although LTP and LTD at cerebellar parallel fibre (PF)-Purkinje cell synapses are thought to be controlled by glutamate receptor trafficking, the involvement of MAPK subfamilies has not been systemically studied in cerebellar slice preparations. To clarify the role of the MAPK cascade in cerebellar LTD, we performed biochemical and electrophysiological analyses using ICR mouse cerebellar slices. Immunoblot analyses using phosphorylation-specific antibodies for MAPKs revealed that among the three MAPKs, ERK1/2 was specifically activated by phorbol ester, which could induce LTD in cerebellar slices. In addition, U0126, a specific inhibitor of the MAPK kinase-ERK1/2 pathway, abrogated the induction of LTD in cerebellar slices, whereas SB203580 and SP600125, specific inhibitors of p38 MAPK and JNK, respectively, had no effect. Although metabotropic glutamate receptor 1 (mGluR1) has been suggested as a possible downstream target of ERK1/2 in cell-culture preparations, mGluR1-activated slow excitatory postsynaptic currents (EPSCs) were not affected by U0126 treatment in slices. These findings indicate that unlike hippocampal LTD mediated by p38 MAPK, glutamate receptor trafficking during cerebellar LTD was regulated by a distinct mechanism involving ERK1/2 in slice preparations.


Asunto(s)
Cerebelo/citología , Depresión Sináptica a Largo Plazo/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Neuronas/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Animales Recién Nacidos , Western Blotting/métodos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Interacciones Farmacológicas , Estimulación Eléctrica/métodos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Inmunohistoquímica/métodos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de la radiación , Ratones , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Acetato de Tetradecanoilforbol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA