Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cardiovasc Diabetol ; 20(1): 182, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496837

RESUMEN

BACKGROUND: Basement membrane (BM) accumulation is a hallmark of micro-vessel disease in diabetes mellitus (DM). We previously reported marked upregulation of BM components in internal thoracic arteries (ITAs) from type 2 DM (T2DM) patients by mass spectrometry. Here, we first sought to determine if BM accumulation is a common feature of different arteries in T2DM, and second, to identify other effects of T2DM on the arterial proteome. METHODS: Human arterial samples collected during heart and vascular surgery from well-characterized patients and stored in the Odense Artery Biobank were analysed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We included ascending thoracic aortas (ATA) (n = 10 (type 2 DM, T2DM) and n = 10 (non-DM)); laser capture micro-dissected plaque- and media compartments from carotid plaques (n = 10 (T2DM) and n = 9 (non-DM)); and media- and adventitia compartments from ITAs (n = 9 (T2DM) and n = 7 (non-DM)). RESULTS: We first extended our previous finding of BM accumulation in arteries from T2DM patients, as 7 of 12 pre-defined BM proteins were significantly upregulated in bulk ATAs consisting of > 90% media. Although less pronounced, BM components tended to be upregulated in the media of ITAs from T2DM patients, but not in the neighbouring adventitia. Overall, we did not detect effects on BM proteins in carotid plaques or in the plaque-associated media. Instead, complement factors, an RNA-binding protein and fibrinogens appeared to be regulated in these tissues from T2DM patients. CONCLUSION: Our results suggest that accumulation of BM proteins is a general phenomenon in the medial layer of non-atherosclerotic arteries in patients with T2DM. Moreover, we identify additional T2DM-associated effects on the arterial proteome, which requires validation in future studies.


Asunto(s)
Arterias/química , Membrana Basal/química , Diabetes Mellitus Tipo 2/metabolismo , Angiopatías Diabéticas/metabolismo , Proteoma , Proteómica , Anciano , Anciano de 80 o más Años , Aorta Torácica/química , Arterias/patología , Arteria Carótida Interna/química , Arteria Carótida Interna/patología , Cromatografía Liquida , Diabetes Mellitus Tipo 2/diagnóstico , Angiopatías Diabéticas/diagnóstico , Femenino , Humanos , Masculino , Arterias Mamarias/química , Persona de Mediana Edad , Placa Aterosclerótica , Espectrometría de Masas en Tándem
2.
Microbiol Spectr ; 10(3): e0031022, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35587637

RESUMEN

In this study, 28 "historical" clinical freeze-dried nontuberculous mycobacterial isolates collected from 1948 to 1957, were analyzed by investigating their viability and performing whole genome sequencing (WGS) on DNA extracted (i) directly from freeze-dried cells versus (ii) after culturing, to determine cell properties and DNA quality after centuries of freeze-dried storage. The isolated DNA was sequenced on the Illumina MiSeq platform and data quality evaluated analyzing the per-base quality scores of paired-end sequencing reads as well as the overall contiguity of resulting de novo assemblies. After 72 years in storage, all freeze-dried isolates were viable, and showed no signs of cell damage and limited signs of contamination when reculturing. They were recultured without problems and identified through WGS with only four of 13 parameters showing statistical significance based on sequence data obtained directly from the freeze-dried cells versus after reculturing, indicating no DNA degradation. Thus, mycobacteria can be whole genome sequenced successfully directly from freeze-dried material without prior recultivation, saving laboratory time and resources, and emphasizing the value of freeze-drying for long-term storage. Our study lays the groundwork for further genomic investigations of freeze-dried bacterial isolates, and the approximately 4,000 historical isolates in our collection will provide a unique opportunity to investigate mycobacterial DNA from a variety of NTM species unexposed to antimicrobials, some maybe still undescribed species. IMPORTANCE The genus Mycobacterium was described more than a century ago and new species are continuously identified and described. There is an ongoing discussion about an increase in the incidence of disease caused by nontuberculous mycobacteria (NTM). How the different bacteria looked before exposure to antibiotics can only be investigated by looking at strains from before the antibiotic era. Strains from that era will be stored in different ways, for example by freeze-drying. The question is how to investigate these strains, and if they are still viable, whether they need to be cultured, and if that changes the DNA. Here, we test all these parameters on freeze-dried strains and show that NGS can be applied directly without culturing.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium , Humanos , Mycobacterium/genética , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA