Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Circulation ; 148(14): 1099-1112, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37602409

RESUMEN

BACKGROUND: Cardiac reprogramming is a technique to directly convert nonmyocytes into myocardial cells using genes or small molecules. This intervention provides functional benefit to the rodent heart when delivered at the time of myocardial infarction or activated transgenically up to 4 weeks after myocardial infarction. Yet, several hurdles have prevented the advancement of cardiac reprogramming for clinical use. METHODS: Through a combination of screening and rational design, we identified a cardiac reprogramming cocktail that can be encoded in a single adeno-associated virus. We also created a novel adeno-associated virus capsid that can transduce cardiac fibroblasts more efficiently than available parental serotypes by mutating posttranslationally modified capsid residues. Because a constitutive promoter was needed to drive high expression of these cell fate-altering reprogramming factors, we included binding sites to a cardiomyocyte-restricted microRNA within the 3' untranslated region of the expression cassette that limits expression to nonmyocytes. After optimizing this expression cassette to reprogram human cardiac fibroblasts into induced cardiomyocyte-like cells in vitro, we also tested the ability of this capsid/cassette combination to confer functional benefit in acute mouse myocardial infarction and chronic rat myocardial infarction models. RESULTS: We demonstrated sustained, dose-dependent improvement in cardiac function when treating a rat model 2 weeks after myocardial infarction, showing that cardiac reprogramming, when delivered in a single, clinically relevant adeno-associated virus vector, can support functional improvement in the postremodeled heart. This benefit was not observed with GFP (green fluorescent protein) or a hepatocyte reprogramming cocktail and was achieved even in the presence of immunosuppression, supporting myocyte formation as the underlying mechanism. CONCLUSIONS: Collectively, these results advance the application of cardiac reprogramming gene therapy as a viable therapeutic approach to treat chronic heart failure resulting from ischemic injury.


Asunto(s)
MicroARNs , Infarto del Miocardio , Ratas , Ratones , Humanos , Animales , Dependovirus/genética , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/terapia , Infarto del Miocardio/tratamiento farmacológico , MicroARNs/genética , MicroARNs/metabolismo , Terapia Genética/métodos , Proteínas Fluorescentes Verdes/genética , Reprogramación Celular , Fibroblastos/metabolismo
2.
Circulation ; 145(17): 1339-1355, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35061545

RESUMEN

BACKGROUND: The regenerative capacity of the heart after myocardial infarction is limited. Our previous study showed that ectopic introduction of 4 cell cycle factors (4F; CDK1 [cyclin-dependent kinase 1], CDK4 [cyclin-dependent kinase 4], CCNB [cyclin B1], and CCND [cyclin D1]) promotes cardiomyocyte proliferation in 15% to 20% of infected cardiomyocytes in vitro and in vivo and improves cardiac function after myocardial infarction in mice. METHODS: Using temporal single-cell RNA sequencing, we aimed to identify the necessary reprogramming stages during the forced cardiomyocyte proliferation with 4F on a single cell basis. Using rat and pig models of ischemic heart failure, we aimed to start the first preclinical testing to introduce 4F gene therapy as a candidate for the treatment of ischemia-induced heart failure. RESULTS: Temporal bulk and single-cell RNA sequencing and further biochemical validations of mature human induced pluripotent stem cell-derived cardiomyocytes treated with either LacZ or 4F adenoviruses revealed full cell cycle reprogramming in 15% of the cardiomyocyte population at 48 hours after infection with 4F, which was associated mainly with sarcomere disassembly and metabolic reprogramming (n=3/time point/group). Transient overexpression of 4F, specifically in cardiomyocytes, was achieved using a polycistronic nonintegrating lentivirus (NIL) encoding 4F; each is driven by a TNNT2 (cardiac troponin T isoform 2) promoter (TNNT2-4Fpolycistronic-NIL). TNNT2-4Fpolycistronic-NIL or control virus was injected intramyocardially 1 week after myocardial infarction in rats (n=10/group) or pigs (n=6-7/group). Four weeks after injection, TNNT2-4Fpolycistronic-NIL-treated animals showed significant improvement in left ventricular ejection fraction and scar size compared with the control virus-treated animals. At 4 months after treatment, rats that received TNNT2-4Fpolycistronic-NIL still showed a sustained improvement in cardiac function and no obvious development of cardiac arrhythmias or systemic tumorigenesis (n=10/group). CONCLUSIONS: This study provides mechanistic insights into the process of forced cardiomyocyte proliferation and advances the clinical feasibility of this approach by minimizing the oncogenic potential of the cell cycle factors owing to the use of a novel transient and cardiomyocyte-specific viral construct.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Animales , Ciclo Celular , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Ratas , Volumen Sistólico , Porcinos , Función Ventricular Izquierda
3.
Circ Res ; 125(6): 628-642, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31310161

RESUMEN

RATIONALE: Preclinical testing of cardiotoxicity and efficacy of novel heart failure therapies faces a major limitation: the lack of an in situ culture system that emulates the complexity of human heart tissue and maintains viability and functionality for a prolonged time. OBJECTIVE: To develop a reliable, easily reproducible, medium-throughput method to culture pig and human heart slices under physiological conditions for a prolonged period of time. METHODS AND RESULTS: Here, we describe a novel, medium-throughput biomimetic culture system that maintains viability and functionality of human and pig heart slices (300 µm thickness) for 6 days in culture. We optimized the medium and culture conditions with continuous electrical stimulation at 1.2 Hz and oxygenation of the medium. Functional viability of these slices over 6 days was confirmed by assessing their calcium homeostasis, twitch force generation, and response to ß-adrenergic stimulation. Temporal transcriptome analysis using RNAseq at day 2, 6, and 10 in culture confirmed overall maintenance of normal gene expression for up to 6 days, while over 500 transcripts were differentially regulated after 10 days. Electron microscopy demonstrated intact mitochondria and Z-disc ultra-structures after 6 days in culture under our optimized conditions. This biomimetic culture system was successful in keeping human heart slices completely viable and functionally and structurally intact for 6 days in culture. We also used this system to demonstrate the effects of a novel gene therapy approach in human heart slices. Furthermore, this culture system enabled the assessment of contraction and relaxation kinetics on isolated single myofibrils from heart slices after culture. CONCLUSIONS: We have developed and optimized a reliable medium-throughput culture system for pig and human heart slices as a platform for testing the efficacy of novel heart failure therapeutics and reliable testing of cardiotoxicity in a 3-dimensional heart model.


Asunto(s)
Biomimética/métodos , Ventrículos Cardíacos/ultraestructura , Función Ventricular/fisiología , Adulto , Animales , Femenino , Corazón/fisiología , Ventrículos Cardíacos/citología , Humanos , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Miocardio/citología , Miocardio/ultraestructura , Técnicas de Cultivo de Órganos/métodos , Porcinos , Transcriptoma/fisiología
4.
Development ; 144(5): 866-875, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28246214

RESUMEN

miR-1 is a small noncoding RNA molecule that modulates gene expression in heart and skeletal muscle. Loss of Drosophila miR-1 produces defects in somatic muscle and embryonic heart development, which have been partly attributed to miR-1 directly targeting Delta to decrease Notch signaling. Here, we show that overexpression of miR-1 in the fly wing can paradoxically increase Notch activity independently of its effects on Delta. Analyses of potential miR-1 targets revealed that miR-1 directly regulates the 3'UTR of the E3 ubiquitin ligase Nedd4 Analysis of embryonic and adult fly heart revealed that the Nedd4 protein regulates heart development in Drosophila Larval fly hearts overexpressing miR-1 have profound defects in actin filament organization that are partially rescued by concurrent overexpression of Nedd4. These results indicate that miR-1 and Nedd4 act together in the formation and actin-dependent patterning of the fly heart. Importantly, we have found that the biochemical and genetic relationship between miR-1 and the mammalian ortholog Nedd4-like (Nedd4l) is evolutionarily conserved in the mammalian heart, potentially indicating a role for Nedd4L in mammalian postnatal maturation. Thus, miR-1-mediated regulation of Nedd4/Nedd4L expression may serve to broadly modulate the trafficking or degradation of Nedd4/Nedd4L substrates in the heart.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , MicroARNs/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Regiones no Traducidas 3' , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Tipificación del Cuerpo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Proteínas Fluorescentes Verdes/metabolismo , Corazón/fisiología , Ubiquitina-Proteína Ligasas Nedd4 , Fenotipo , Fosforilación , Transporte de Proteínas , Receptores Notch/metabolismo , Transducción de Señal , Ubiquitinación , Alas de Animales/metabolismo
5.
Circulation ; 135(10): 978-995, 2017 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-27834668

RESUMEN

BACKGROUND: Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. METHODS: We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. RESULTS: We found that a combination of the transforming growth factor-ß inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-ß and WNT inhibition and was achieved most efficiently with GMT plus myocardin. CONCLUSIONS: Transforming growth factor-ß and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration.


Asunto(s)
Benzamidas/farmacología , Reprogramación Celular/efectos de los fármacos , Dioxoles/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Factores de Transcripción/metabolismo , Animales , Benzamidas/uso terapéutico , Células Cultivadas , Dioxoles/uso terapéutico , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Corazón/diagnóstico por imagen , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Humanos , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Imagen por Resonancia Magnética , Ratones , Infarto del Miocardio/tratamiento farmacológico , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo
6.
J Mol Cell Cardiol ; 84: 13-23, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25871831

RESUMEN

Valvular and vascular calcification are common causes of cardiovascular morbidity and mortality. Developing effective treatments requires understanding the molecular underpinnings of these processes. Shear stress is thought to play a role in inhibiting calcification. Furthermore, NOTCH1 regulates vascular and valvular endothelium, and human mutations in NOTCH1 can cause calcific aortic valve disease. Here, we determined the genome-wide impact of altering shear stress and NOTCH signaling on human aortic valve endothelium. mRNA-sequencing of primary human aortic valve endothelial cells (HAVECs) with or without knockdown of NOTCH1, in the presence or absence of shear stress, revealed NOTCH1-dependency of the atherosclerosis-related gene connexin 40 (GJA5), and numerous repressors of endochondral ossification. Among these, matrix gla protein (MGP) is highly expressed in aortic valve and vasculature, and inhibits soft tissue calcification by sequestering bone morphogenetic proteins (BMPs). Altering NOTCH1 levels affected MGP mRNA and protein in HAVECs. Furthermore, shear stress activated NOTCH signaling and MGP in a NOTCH1-dependent manner. NOTCH1 positively regulated endothelial MGP in vivo through specific binding motifs upstream of MGP. Our studies suggest that shear stress activates NOTCH1 in primary human aortic valve endothelial cells leading to downregulation of osteoblast-like gene networks that play a role in tissue calcification.


Asunto(s)
Estenosis de la Válvula Aórtica/genética , Válvula Aórtica/patología , Calcinosis/genética , Proteínas de Unión al Calcio/metabolismo , Endotelio Vascular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Redes Reguladoras de Genes , Receptor Notch1/metabolismo , Estenosis de la Válvula Aórtica/patología , Calcinosis/patología , Inmunoprecipitación de Cromatina , Análisis por Conglomerados , ADN/metabolismo , Células Endoteliales/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Genoma Humano , Humanos , Unión Proteica , Reología , Análisis de Secuencia de ARN , Transducción de Señal/genética , Estrés Mecánico , Proteína Gla de la Matriz
7.
J Biol Chem ; 289(20): 14263-71, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24719334

RESUMEN

MicroRNA (miRNA) maturation is regulated by interaction of particular miRNA precursors with specific RNA-binding proteins. Following their biogenesis, mature miRNAs are incorporated into the RNA-induced silencing complex (RISC) where they interact with mRNAs to negatively regulate protein production. However, little is known about how mature miRNAs are regulated at the level of their activity. To address this, we screened for proteins differentially bound to the mature form of the miR-1 or miR-133 miRNA families. These muscle-enriched, co-transcribed miRNA pairs cooperate to suppress smooth muscle gene expression in the heart. However, they also have opposing roles, with the miR-1 family, composed of miR-1 and miR-206, promoting myogenic differentiation, whereas miR-133 maintains the progenitor state. Here, we describe a physical interaction between TDP-43, an RNA-binding protein that forms aggregates in the neuromuscular disease, amyotrophic lateral sclerosis, and the miR-1, but not miR-133, family. Deficiency of the TDP-43 Drosophila ortholog enhanced dmiR-1 activity in vivo. In mammalian cells, TDP-43 limited the activity of both miR-1 and miR-206, but not the miR-133 family, by disrupting their RISC association. Consistent with TDP-43 dampening miR-1/206 activity, protein levels of the miR-1/206 targets, IGF-1 and HDAC4, were elevated in TDP-43 transgenic mouse muscle. This occurred without corresponding Igf-1 or Hdac4 mRNA increases and despite higher miR-1 and miR-206 expression. Our findings reveal that TDP-43 negatively regulates the activity of the miR-1 family of miRNAs by limiting their bioavailability for RISC loading and suggest a processing-independent mechanism for differential regulation of miRNA activity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , MicroARNs/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas Argonautas/metabolismo , Drosophila melanogaster/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Unión Proteica
8.
Nature ; 460(7256): 705-10, 2009 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-19578358

RESUMEN

MicroRNAs (miRNAs) are regulators of myriad cellular events, but evidence for a single miRNA that can efficiently differentiate multipotent stem cells into a specific lineage or regulate direct reprogramming of cells into an alternative cell fate has been elusive. Here we show that miR-145 and miR-143 are co-transcribed in multipotent murine cardiac progenitors before becoming localized to smooth muscle cells, including neural crest stem-cell-derived vascular smooth muscle cells. miR-145 and miR-143 were direct transcriptional targets of serum response factor, myocardin and Nkx2-5 (NK2 transcription factor related, locus 5) and were downregulated in injured or atherosclerotic vessels containing proliferating, less differentiated smooth muscle cells. miR-145 was necessary for myocardin-induced reprogramming of adult fibroblasts into smooth muscle cells and sufficient to induce differentiation of multipotent neural crest stem cells into vascular smooth muscle. Furthermore, miR-145 and miR-143 cooperatively targeted a network of transcription factors, including Klf4 (Kruppel-like factor 4), myocardin and Elk-1 (ELK1, member of ETS oncogene family), to promote differentiation and repress proliferation of smooth muscle cells. These findings demonstrate that miR-145 can direct the smooth muscle fate and that miR-145 and miR-143 function to regulate the quiescent versus proliferative phenotype of smooth muscle cells.


Asunto(s)
Linaje de la Célula , MicroARNs/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Femenino , Regulación de la Expresión Génica , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Factor 4 Similar a Kruppel , Masculino , Ratones , Ratones Transgénicos , MicroARNs/genética , Modelos Biológicos , Miocardio/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Enfermedades Vasculares/metabolismo , Proteína Elk-4 del Dominio ets/metabolismo
9.
Stem Cells ; 31(1): 92-103, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23079999

RESUMEN

Recent evidence suggests human embryonic stem cell (hESC) and induced pluripotent stem (iPS) cell lines have differences in their epigenetic marks and transcriptomes, yet the impact of these differences on subsequent terminally differentiated cells is less well understood. Comparison of purified, homogeneous populations of somatic cells derived from multiple independent human iPS and ES lines will be required to address this critical question. Here, we report a differentiation protocol based on embryonic development that consistently yields large numbers of endothelial cells (ECs) derived from multiple hESCs or iPS cells. Mesoderm differentiation of embryoid bodies was maximized, and defined growth factors were used to generate KDR(+) EC progenitors. Magnetic purification of a KDR(+) progenitor subpopulation resulted in an expanding, homogeneous pool of ECs that expressed EC markers and had functional properties of ECs. Comparison of the transcriptomes revealed limited gene expression variability between multiple lines of human iPS-derived ECs or between lines of ES- and iPS-derived ECs. These results demonstrate a method to generate large numbers of pure human EC progenitors and differentiated ECs from pluripotent stem cells and suggest individual lineages derived from human iPS cells may have significantly less variance than their pluripotent founders.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula , Expresión Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Humanos , Mesodermo/embriología , Mesodermo/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transcriptoma/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
Circ Res ; 111(11): 1421-33, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-22955733

RESUMEN

RATIONALE: Formation and remodeling of the vasculature during development and disease involve a highly conserved and precisely regulated network of attractants and repellants. Various signaling pathways control the behavior of endothelial cells, but their posttranscriptional dose titration by microRNAs is poorly understood. OBJECTIVE: To identify microRNAs that regulate angiogenesis. METHODS AND RESULTS: We show that the highly conserved microRNA family encoding miR-10 regulates the behavior of endothelial cells during angiogenesis by positively titrating proangiogenic signaling. Knockdown of miR-10 led to premature truncation of intersegmental vessel growth in the trunk of zebrafish larvae, whereas overexpression of miR-10 promoted angiogenic behavior in zebrafish and cultured human umbilical venous endothelial cells. We found that miR-10 functions, in part, by directly regulating the level of fms-related tyrosine kinase 1 (FLT1), a cell-surface protein that sequesters vascular endothelial growth factor, and its soluble splice variant sFLT1. The increase in FLT1/sFLT1 protein levels upon miR-10 knockdown in zebrafish and in human umbilical venous endothelial cells inhibited the angiogenic behavior of endothelial cells largely by antagonizing vascular endothelial growth factor receptor 2 signaling. CONCLUSIONS: Our study provides insights into how FLT1 and vascular endothelial growth factor receptor 2 signaling is titrated in a microRNA-mediated manner and establishes miR-10 as a potential new target for the selective modulation of angiogenesis.


Asunto(s)
Células Endoteliales/metabolismo , MicroARNs/genética , Neovascularización Fisiológica/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Immunoblotting , Larva/genética , Larva/metabolismo , Masculino , Ratones , Microscopía Confocal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Transducción de Señal/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
11.
Commun Med (Lond) ; 4(1): 38, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499690

RESUMEN

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a familial cardiac disease associated with ventricular arrhythmias and an increased risk of sudden cardiac death. Currently, there are no approved treatments that address the underlying genetic cause of this disease, representing a significant unmet need. Mutations in Plakophilin-2 (PKP2), encoding a desmosomal protein, account for approximately 40% of ARVC cases and result in reduced gene expression. METHODS: Our goal is to examine the feasibility and the efficacy of adeno-associated virus 9 (AAV9)-mediated restoration of PKP2 expression in a cardiac specific knock-out mouse model of Pkp2. RESULTS: We show that a single dose of AAV9:PKP2 gene delivery prevents disease development before the onset of cardiomyopathy and attenuates disease progression after overt cardiomyopathy. Restoration of PKP2 expression leads to a significant extension of lifespan by restoring cellular structures of desmosomes and gap junctions, preventing or halting decline in left ventricular ejection fraction, preventing or reversing dilation of the right ventricle, ameliorating ventricular arrhythmia event frequency and severity, and preventing adverse fibrotic remodeling. RNA sequencing analyses show that restoration of PKP2 expression leads to highly coordinated and durable correction of PKP2-associated transcriptional networks beyond desmosomes, revealing a broad spectrum of biological perturbances behind ARVC disease etiology. CONCLUSIONS: We identify fundamental mechanisms of PKP2-associated ARVC beyond disruption of desmosome function. The observed PKP2 dose-function relationship indicates that cardiac-selective AAV9:PKP2 gene therapy may be a promising therapeutic approach to treat ARVC patients with PKP2 mutations.


Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heart disease that leads to abnormal heartbeats and a higher risk of sudden cardiac death. ARVC is often caused by changes in a gene called PKP2, that then makes less PKP2 protein. PKP2 protein is important for the normal structure and function of the heart. Human ARVC characteristics can be mimicked in a mouse model missing this gene. Given no therapeutic option, our goal was to test if adding a working copy of PKP2 gene in the heart of this mouse model, using a technique called gene therapy that can deliver genes to cells, could improve heart function. Here, we show that a single dose of PKP2 gene therapy can improve heart function and heartbeats as well as extend lifespan in mice. PKP2 gene therapy may be a promising approach to treat ARVC patients with PKP2 mutations.

12.
Development ; 137(24): 4307-16, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21098571

RESUMEN

Neural crest cells (NCCs) are a subset of multipotent, migratory stem cells that populate a large number of tissues during development and are important for craniofacial and cardiac morphogenesis. Although microRNAs (miRNAs) have emerged as important regulators of development and disease, little is known about their role in NCC development. Here, we show that loss of miRNA biogenesis by NCC-specific disruption of murine Dicer results in embryos lacking craniofacial cartilaginous structures, cardiac outflow tract septation and thymic and dorsal root ganglia development. Dicer mutant embryos had reduced expression of Dlx2, a transcriptional regulator of pharyngeal arch development, in the first pharyngeal arch (PA1). miR-452 was enriched in NCCs, was sufficient to rescue Dlx2 expression in Dicer mutant pharyngeal arches, and regulated non-cell-autonomous signaling involving Wnt5a, Shh and Fgf8 that converged on Dlx2 regulation in PA1. Correspondingly, knockdown of miR-452 in vivo decreased Dlx2 expression in the mandibular component of PA1, leading to craniofacial defects. These results suggest that post-transcriptional regulation by miRNAs is required for differentiation of NCC-derived tissues and that miR-452 is involved in epithelial-mesenchymal signaling in the pharyngeal arch.


Asunto(s)
Región Branquial/embriología , MicroARNs/metabolismo , Cresta Neural/embriología , Animales , Línea Celular , ARN Helicasas DEAD-box/genética , Endorribonucleasas/genética , Factor 8 de Crecimiento de Fibroblastos/genética , Proteínas Hedgehog/genética , Proteínas de Homeodominio/genética , Hibridación in Situ , Ratones , Ratones Mutantes , MicroARNs/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa III , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Proteínas Wnt/genética , Proteína Wnt-5a
13.
Proc Natl Acad Sci U S A ; 107(48): 20750-5, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21071677

RESUMEN

Cardiac and skeletal muscle development and maintenance require complex interactions between DNA-binding proteins and chromatin remodeling factors. We previously reported that Smyd1, a muscle-restricted histone methyltransferase, is essential for cardiogenesis and functions with a network of cardiac regulatory proteins. Here we show that the muscle-specific transcription factor skNAC is the major binding partner for Smyd1 in the developing heart. Targeted deletion of skNAC in mice resulted in partial embryonic lethality by embryonic day 12.5, with ventricular hypoplasia and decreased cardiomyocyte proliferation that were similar but less severe than in Smyd1 mutants. Expression of Irx4, a ventricle-specific transcription factor down-regulated in hearts lacking Smyd1, also depended on the presence of skNAC. Viable skNAC(-/-) adult mice had reduced postnatal skeletal muscle growth and impaired regenerative capacity after cardiotoxin-induced injury. Satellite cells isolated from skNAC(-/-) mice had impaired survival compared with wild-type littermate satellite cells. Our results indicate that skNAC plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration in mice.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Corazón/crecimiento & desarrollo , Chaperonas Moleculares/metabolismo , Desarrollo de Músculos/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Regeneración/fisiología , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Tipificación del Cuerpo , Proliferación Celular , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Ventrículos Cardíacos/anomalías , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/patología , Ratones , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Músculo Esquelético/embriología , Músculo Esquelético/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Especificidad de Órganos/genética , Organogénesis/genética , Unión Proteica , Factores de Transcripción/genética
14.
Stem Cell Reports ; 18(11): 2138-2153, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37863045

RESUMEN

Congenital heart disease often arises from perturbations of transcription factors (TFs) that guide cardiac development. ISLET1 (ISL1) is a TF that influences early cardiac cell fate, as well as differentiation of other cell types including motor neuron progenitors (MNPs) and pancreatic islet cells. While lineage specificity of ISL1 function is likely achieved through combinatorial interactions, its essential cardiac interacting partners are unknown. By assaying ISL1 genomic occupancy in human induced pluripotent stem cell-derived cardiac progenitors (CPs) or MNPs and leveraging the deep learning approach BPNet, we identified motifs of other TFs that predicted ISL1 occupancy in each lineage, with NKX2.5 and GATA motifs being most closely associated to ISL1 in CPs. Experimentally, nearly two-thirds of ISL1-bound loci were co-occupied by NKX2.5 and/or GATA4. Removal of NKX2.5 from CPs led to widespread ISL1 redistribution, and overexpression of NKX2.5 in MNPs led to ISL1 occupancy of CP-specific loci. These results reveal how ISL1 guides lineage choices through a combinatorial code that dictates genomic occupancy and transcription.


Asunto(s)
Células Madre Pluripotentes Inducidas , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Miocitos Cardíacos , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
15.
Dev Biol ; 351(1): 62-9, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21185281

RESUMEN

Cardiogenesis involves the contributions of multiple progenitor pools, including mesoderm-derived cardiac progenitors known as the first and second heart fields. Disruption of genetic pathways regulating individual subsets of cardiac progenitors likely underlies many forms of human cardiac malformations. Hand2 is a member of the basic helix loop helix (bHLH) family of transcription factors and is expressed in numerous cell lineages that contribute to the developing heart. However, the early embryonic lethality of Hand2-null mice has precluded lineage-specific study of its function in myocardial progenitors. Here, we generated and used a floxed allele of Hand2 to ablate its expression in specific cardiac cell populations at defined developmental points. We found that Hand2 expression within the mesoderm-derived second heart field progenitors was required for their survival and deletion in this domain recapitulated the complete Hand2-null phenotype. Loss of Hand2 at later stages of development and in restricted domains of the second heart field revealed a spectrum of cardiac anomalies resembling forms of human congenital heart disease. Molecular analyses of Hand2 mutant cells revealed several genes by which Hand2 may influence expansion of the cardiac progenitors. These findings demonstrate that Hand2 is essential for survival of second heart field progenitors and that the graded loss of Hand2 function in this cardiac progenitor pool can cause a spectrum of congenital heart malformation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Corazón/embriología , Células Madre/fisiología , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Supervivencia Celular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Faringe/embriología
16.
Nature ; 441(7097): 1097-9, 2006 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-16810246

RESUMEN

The use of stem cells to generate replacement cells for damaged heart muscle, valves, vessels and conduction cells holds great potential. Recent identification of multipotent progenitor cells in the heart and improved understanding of developmental processes relevant to pluripotent embryonic stem cells may facilitate the generation of specific types of cell that can be used to treat human heart disease. Secreted factors from circulating progenitor cells that localize to sites of damage may also be useful for tissue protection or neovascularization. The exciting discoveries in basic science will require rigorous testing in animal models to determine those most worthy of future clinical trials.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Cardiopatías/patología , Cardiopatías/terapia , Células Madre/citología , Animales , Diferenciación Celular , Linaje de la Célula , Humanos , Trasplante de Células Madre/tendencias , Células Madre/fisiología
17.
Proc Natl Acad Sci U S A ; 105(46): 17830-5, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19004786

RESUMEN

Organ patterning during embryonic development requires precise temporal and spatial regulation of protein activity. microRNAs (miRNAs), small noncoding RNAs that typically inhibit protein expression, are broadly important for proper development, but their individual functions during organogenesis are largely unknown. We report that miR-138 is expressed in specific domains in the zebrafish heart and is required to establish appropriate chamber-specific gene expression patterns. Disruption of miR-138 function led to ventricular expansion of gene expression normally restricted to the atrio-ventricular valve region and, ultimately, to disrupted ventricular cardiomyocyte morphology and cardiac function. Temporal-specific knockdown of miR-138 by antagomiRs showed miR-138 function was required during a discrete developmental window, 24-34 h post-fertilization (hpf). miR-138 functioned partially by repressing the retinoic acid synthesis enzyme, aldehyde dehydrogenase-1a2, in the ventricle. This activity was complemented by miR-138-mediated ventricular repression of the gene encoding versican (cspg2), which was positively regulated by retinoic-acid signaling. Our findings demonstrate that miR-138 helps establish discrete domains of gene expression during cardiac morphogenesis by targeting multiple members of a common pathway, and also establish the use of antagomiRs in fish for temporal knockdown of miRNA function.


Asunto(s)
Tipificación del Cuerpo/genética , Desarrollo Embrionario/genética , Corazón/embriología , MicroARNs/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Ratones , MicroARNs/genética , Células 3T3 NIH , Organogénesis , Factores de Tiempo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
18.
Circ Res ; 103(4): 388-95, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18635823

RESUMEN

The ductus arteriosus is a specialized blood vessel containing highly differentiated and contractile vascular smooth muscle, derived largely from neural crest cells, that is essential for fetal life but typically closes after birth. Impaired development of the ductus arteriosus or disruption of signaling pathways that initiate postnatal closure can result in persistent patency of the ductus arteriosus, the third most common congenital heart defect. We found that Tfap2beta, a transcription factor associated with patent ductus arteriosus in humans, was uniquely expressed in mouse ductal smooth muscle. Endothelin-1 and the hypoxia-induced transcription factor, Hif2alpha were also highly enriched in ductal smooth muscle at embryonic day 13.5 and were dependent on Tfap2beta for their expression in this domain. Hif2alpha functioned as a negative regulator of Tfap2beta-induced transcription by disrupting protein-DNA interactions, suggesting a negative feedback loop regulating Tfap2beta activity. Our data indicate that Tfap2beta, Et-1, and Hif2alpha act in a transcriptional network during ductal smooth muscle development and that disruption of this pathway may contribute to patent ductus arteriosus by affecting the development of smooth muscle within the ductus arteriosus.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Conducto Arterioso Permeable/metabolismo , Conducto Arterial/metabolismo , Endotelina-1/metabolismo , Factor de Transcripción AP-2/metabolismo , Transcripción Genética/fisiología , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Conducto Arterial/fisiología , Conducto Arterioso Permeable/etiología , Conducto Arterioso Permeable/fisiopatología , Feto/metabolismo , Humanos , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Músculo Liso Vascular/embriología , Músculo Liso Vascular/metabolismo , Mutación , Transducción de Señal/fisiología , Factor de Transcripción AP-2/genética , Transfección
19.
Pediatr Cardiol ; 31(3): 349-56, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20140609

RESUMEN

The transcriptional regulation of cardiovascular development requires precise spatiotemporal control of gene expression, and heterozygous mutations of transcription factors have frequently been implicated in human cardiovascular malformations. A novel mechanism involving post-transcriptional regulation by small, noncoding microRNAs (miRNAs) has emerged as a central regulator of many cardiogenic processes. We are beginning to understand the functions that miRNAs play during essential biologic processes, such as cell proliferation, differentiation, apoptosis, stress response, and tumorigenesis. The identification of miRNAs expressed in specific cardiac and vascular cell types has led to the discovery of important regulatory roles for these small RNAs during cardiomyocyte differentiation, cell cycle, conduction, and vessel formation. Here, we overview the recent findings on miRNA regulation in cardiovascular development. Further analysis of miRNA function during cardiovascular development will allow us to determine the potential for novel miRNA-based therapeutic strategies.


Asunto(s)
Corazón/embriología , MicroARNs/genética , Miocitos Cardíacos/fisiología , Diferenciación Celular , Proliferación Celular , Expresión Génica , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Corazón/fisiología , Humanos , Músculo Liso/embriología , Músculo Liso/fisiología
20.
J Clin Invest ; 116(11): 2863-5, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17080192

RESUMEN

The ductus arteriosus (DA) is a vessel whose patency is required for fetal survival but is incompatible with postnatal life. Because of developmental insufficiency, the DA in preterm infants often fails to close in a condition known as patent DA (PDA). Although COX inhibitors can be used to close the PDA by lowering circulating prostaglandin levels, their effectiveness is correlated with birth weight, and severely premature infants often require surgical repair. Paradoxically, targeted deletion of COX pathway components in mice results in PDA. In this issue of the JCI, Yokoyama et al. describe dual roles for prostaglandins in DA development and closure, offering new insights into the mechanism of negative effects of COX inhibitors that may influence the treatment of severely premature infants with PDA and lead to improvement of their outcomes (see the related article beginning on page 3026).


Asunto(s)
Conducto Arterial/embriología , Conducto Arterial/metabolismo , Animales , Conducto Arterial/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA