Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 161(3): 513-525, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25892223

RESUMEN

Loading of the ring-shaped Mcm2-7 replicative helicase around DNA licenses eukaryotic origins of replication. During loading, Cdc6, Cdt1, and the origin-recognition complex (ORC) assemble two heterohexameric Mcm2-7 complexes into a head-to-head double hexamer that facilitates bidirectional replication initiation. Using multi-wavelength single-molecule fluorescence to monitor the events of helicase loading, we demonstrate that double-hexamer formation is the result of sequential loading of individual Mcm2-7 complexes. Loading of each Mcm2-7 molecule involves the ordered association and dissociation of distinct Cdc6 and Cdt1 proteins. In contrast, one ORC molecule directs loading of both helicases in each double hexamer. Based on single-molecule FRET, arrival of the second Mcm2-7 results in rapid double-hexamer formation that anticipates Cdc6 and Cdt1 release, suggesting that Mcm-Mcm interactions recruit the second helicase. Our findings reveal the complex protein dynamics that coordinate helicase loading and indicate that distinct mechanisms load the oppositely oriented helicases that are central to bidirectional replication initiation.


Asunto(s)
Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Mantenimiento de Minicromosoma/aislamiento & purificación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología
2.
Mol Cell ; 58(3): 483-94, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25921072

RESUMEN

Eukaryotic replication initiation is highly regulated and dynamic. It begins with the origin recognition complex (ORC) binding DNA sites called origins of replication. ORC, together with Cdc6 and Cdt1, mediate pre-replicative complex (pre-RC) assembly by loading a double hexamer of Mcm2-7: the core of the replicative helicase. Here, we use single-molecule imaging to directly visualize Saccharomyces cerevisiae pre-RC assembly and replisome firing in real time. We show that ORC can locate and stably bind origins within large tracts of non-origin DNA and that Cdc6 drives ordered pre-RC assembly. We further show that the dynamics of the ORC-Cdc6 interaction dictate Mcm2-7 loading specificity and that Mcm2-7 double hexamers form preferentially at a native origin sequence. Finally, we demonstrate that single Mcm2-7 hexamers propagate bidirectionally, monotonically, and processively as constituents of active replisomes.


Asunto(s)
Replicación del ADN/genética , Complejo de Reconocimiento del Origen/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Algoritmos , Sitios de Unión/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Eucariotas/metabolismo , Cinética , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Modelos Genéticos , Complejo de Reconocimiento del Origen/metabolismo , Unión Proteica , Origen de Réplica/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Mol Evol ; 77(3): 55-63, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24078151

RESUMEN

The hypothesized dual roles of RNA as both information carrier and biocatalyst during the earliest stages of life require a combination of features: good templating ability (for replication) and stable folding (for ribozymes). However, this poses the following paradox: well-folded sequences are poor templates for copying, but poorly folded sequences are unlikely to be good ribozymes. Here, we describe a strategy to overcome this dilemma through G:U wobble pairing in RNA. Unlike Watson-Crick base pairs, wobble pairs contribute highly to the energetic stability of the folded structure of their sequence, but only slightly, if at all, to the stability of the folded reverse complement. Sequences in the RNA World might thereby combine stable folding of the ribozyme with an unstructured, reverse-complementary genome, resulting in a "division of labor" between the strands. We demonstrate this strategy using computational simulations of RNA folding and an experimental model of early replication, nonenzymatic template-directed RNA primer extension. Additional study is needed to solve other problems associated with a complete replication cycle, including separation of strands after copying. Interestingly, viroid RNA sequences, which have been suggested to be relics of an RNA World (Diener, Proc Natl Acad Sci USA 86:9370-9374, 1989), also show significant asymmetry in folding energy between the infectious (+) and template (-) strands due to G:U pairing, suggesting that this strategy may even be used by replicators in the present day.


Asunto(s)
Pliegue del ARN/fisiología , ARN/química , ARN/genética , Emparejamiento Base , Modelos Moleculares , ARN Catalítico/química , ARN Catalítico/genética , Análisis de Secuencia de ARN
4.
Healthcare (Basel) ; 9(8)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34442199

RESUMEN

Chimeric antigen receptor and T-cell receptor (CAR-T/TCR-T) cellular immunotherapies have shown remarkable success in the treatment of some refractory B-cell malignancies, with potential to provide durable clinical response for other types of cancer. In this paper, we look at all available FDA CAR-T/TCR-T clinical trials for the treatment of cancer, and analyze them with respect to different disease tissues, targeted antigens, products, and originator locations. We found that 627 of 1007 registered are currently active and of those 273 (44%) originated in China and 280 (45%) in the US. Our analysis suggests that the rapid increase in the number of clinical trials is driven by the development of different CAR-T products that use a similar therapeutic approach. We coin the term bioparallels to describe such products. Our results suggest that one feature of the CAR-T/TCR-T industry may be a robust response to success and failure of competitor products.

5.
Nat Biomed Eng ; 5(5): 399-413, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33046866

RESUMEN

Therapies employing chimeric antigen receptor T cells (CAR-T cells) targeting tumour-associated antigens (TAAs) can lead to on-target-off-tumour toxicity and to resistance, owing to TAA expression in normal tissues and to TAA expression loss in tumour cells. These drawbacks can be circumvented by CAR-T cells targeting tumour-specific driver gene mutations, such as the four-nucleotide duplication in the oncogene nucleophosmin (NPM1c), which creates a neoepitope presented by the human leukocyte antigen with the A2 serotype (HLA-A2) that has been observed in about 35% of patients with acute myeloid leukaemia (AML). Here, we report a human single-chain variable fragment (scFv), identified via yeast surface display, that specifically binds to the NPM1c epitope-HLA-A2 complex but not to HLA-A2 or to HLA-A2 loaded with control peptides. In vitro and in mice, CAR-T cells with the scFv exhibit potent cytotoxicity against NPM1c+HLA-A2+ leukaemia cells and primary AML blasts, but not NPM1c-HLA-A2+ leukaemia cells or HLA-A2- tumour cells. Therapies using NPM1c CAR-T cells for the treatment of NPM1c+HLA-A2+ AML may limit on-target-off-tumour toxicity and tumour resistance.


Asunto(s)
Linfocitos T CD8-positivos/trasplante , Leucemia Mieloide Aguda/terapia , Proteínas Nucleares/química , Receptores Quiméricos de Antígenos/metabolismo , Anticuerpos de Cadena Única/administración & dosificación , Animales , Antígenos de Neoplasias/química , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Epítopos/inmunología , Antígeno HLA-A2/inmunología , Humanos , Inmunoterapia Adoptiva , Leucemia Mieloide Aguda/inmunología , Ratones , Proteínas Nucleares/inmunología , Nucleofosmina , Células PC-3 , Prueba de Estudio Conceptual , Anticuerpos de Cadena Única/farmacología
6.
Nat Commun ; 11(1): 4837, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973183

RESUMEN

ATP synthesis and thermogenesis are two critical outputs of mitochondrial respiration. How these outputs are regulated to balance the cellular requirement for energy and heat is largely unknown. Here we show that major facilitator superfamily domain containing 7C (MFSD7C) uncouples mitochondrial respiration to switch ATP synthesis to thermogenesis in response to heme. When heme levels are low, MSFD7C promotes ATP synthesis by interacting with components of the electron transport chain (ETC) complexes III, IV, and V, and destabilizing sarcoendoplasmic reticulum Ca2+-ATPase 2b (SERCA2b). Upon heme binding to the N-terminal domain, MFSD7C dissociates from ETC components and SERCA2b, resulting in SERCA2b stabilization and thermogenesis. The heme-regulated switch between ATP synthesis and thermogenesis enables cells to match outputs of mitochondrial respiration to their metabolic state and nutrient supply, and represents a cell intrinsic mechanism to regulate mitochondrial energy metabolism.


Asunto(s)
Adenosina Trifosfato/metabolismo , Hemo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Receptores Virales/metabolismo , Termogénesis/fisiología , Animales , Deficiencia de Citocromo-c Oxidasa , Complejo III de Transporte de Electrones , Complejo IV de Transporte de Electrones , Metabolismo Energético/fisiología , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Membranas Mitocondriales/metabolismo , Dominios Proteicos , Receptores Virales/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal , Células THP-1
8.
Transl Cancer Res ; 5(Suppl 6): S1078-S1081, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31179233
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA