RESUMEN
In the era of living with COVID-19, the risk of localised SARS-CoV-2 outbreaks remains. Here, we develop a multiscale modelling framework for estimating the local outbreak risk for a viral disease (the probability that a major outbreak results from a single case introduced into the population), accounting for within-host viral dynamics. Compared to population-level models previously used to estimate outbreak risks, our approach enables more detailed analysis of how the risk can be mitigated through pre-emptive interventions such as antigen testing. Considering SARS-CoV-2 as a case study, we quantify the within-host dynamics using data from individuals with omicron variant infections. We demonstrate that regular antigen testing reduces, but may not eliminate, the outbreak risk, depending on characteristics of local transmission. In our baseline analysis, daily antigen testing reduces the outbreak risk by 45% compared to a scenario without antigen testing. Additionally, we show that accounting for heterogeneity in within-host dynamics between individuals affects outbreak risk estimates and assessments of the impact of antigen testing. Our results therefore highlight important factors to consider when using multiscale models to design pre-emptive interventions against SARS-CoV-2 and other viruses.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Brotes de Enfermedades/prevención & control , ProbabilidadRESUMEN
Infectious virus shedding from individuals infected with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is used to estimate human-to-human transmission risk. Control of SARS-CoV-2 transmission requires identifying the immune correlates that protect infectious virus shedding. Mucosal immunity prevents infection by SARS-CoV-2, which replicates in the respiratory epithelium and spreads rapidly to other hosts. However, whether mucosal immunity prevents the shedding of the infectious virus in SARS-CoV-2-infected individuals is unknown. We examined the relationship between viral RNA shedding dynamics, duration of infectious virus shedding, and mucosal antibody responses during SARS-CoV-2 infection. Anti-spike secretory IgA antibodies (S-IgA) reduced viral RNA load and infectivity more than anti-spike IgG/IgA antibodies in infected nasopharyngeal samples. Compared with the IgG/IgA response, the anti-spike S-IgA post-infection responses affected the viral RNA shedding dynamics and predicted the duration of infectious virus shedding regardless of the immune history. These findings highlight the importance of anti-spike S-IgA responses in individuals infected with SARS-CoV-2 for preventing infectious virus shedding and SARS-CoV-2 transmission. Developing medical countermeasures to shorten S-IgA response time may help control human-to-human transmission of SARS-CoV-2 infection and prevent future respiratory virus pandemics.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Esparcimiento de Virus , Formación de Anticuerpos , Tiempo de Reacción , Anticuerpos Antivirales , ARN Viral , Inmunoglobulina G , Inmunoglobulina A , Inmunoglobulina A SecretoraRESUMEN
Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn't gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , ARN Viral , Tratamiento Farmacológico de COVID-19 , Antivirales/metabolismo , Sitios de UniónRESUMEN
Chronic infection with hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. Thus, quantifying and understanding the dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, such study requires repeated liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because liver biopsy is potentially morbid and not common during hepatitis B treatment. We here aimed to develop a noninvasive method for quantifying cccDNA in the liver using surrogate markers in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations, integrates experimental data from in vitro and in vivo investigations. By applying this model, we roughly predicted the amount and dynamics of intrahepatic cccDNA within a certain range using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The noninvasive quantification of cccDNA using our proposed method holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.
Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Virus de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/genética , Antígenos e de la Hepatitis B/genética , ADN Viral/genética , Hepatitis B/tratamiento farmacológico , Hepatitis B/patología , Hígado/patología , ADN Circular , Biomarcadores , Antivirales/uso terapéuticoRESUMEN
Human T-cell leukemia virus type 1 (HTLV-1) establishes chronic infection in humans and induces a T-cell malignancy called adult T-cell leukemia-lymphoma (ATL) and several inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Persistent HTLV-1 infection is established under the pressure of host immunity, and therefore the immune response against HTLV-1 is thought to reflect the status of the disease it causes. Indeed, it is known that cellular immunity against viral antigens is suppressed in ATL patients compared to HAM/TSP patients. In this study, we show that profiling the humoral immunity to several HTLV-1 antigens, such as Gag, Env, and Tax, and measuring proviral load are useful tools for classifying disease status and predicting disease development. Using targeted sequencing, we found that several carriers whom this profiling method predicted to be at high risk for developing ATL indeed harbored driver mutations of ATL. The clonality of HTLV-1-infected cells in those carriers was still polyclonal; it is consistent with an early stage of leukemogenesis. Furthermore, this study revealed significance of anti-Gag proteins to predict high risk group in HTLV-1 carriers. Consistent with this finding, anti-Gag cytotoxic T lymphocytes (CTLs) were increased in patients who received hematopoietic stem cell transplantation and achieved remission state, indicating the significance of anti-Gag CTLs for disease control. Our findings suggest that our strategy that combines anti-HTLV-1 antibodies and proviral load may be useful for prediction of the development of HTLV-1-associated diseases.
Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Paraparesia Espástica Tropical , Adulto , Humanos , Virus Linfotrópico T Tipo 1 Humano/genética , Provirus/genética , Biomarcadores , Carga ViralRESUMEN
The scientific community is focused on developing antiviral therapies to mitigate the impacts of the ongoing novel coronavirus disease 2019 (COVID-19) outbreak. This will be facilitated by improved understanding of viral dynamics within infected hosts. Here, using a mathematical model in combination with published viral load data, we compare within-host viral dynamics of SARS-CoV-2 with analogous dynamics of MERS-CoV and SARS-CoV. Our quantitative analyses using a mathematical model revealed that the within-host reproduction number at symptom onset of SARS-CoV-2 was statistically significantly larger than that of MERS-CoV and similar to that of SARS-CoV. In addition, the time from symptom onset to the viral load peak for SARS-CoV-2 infection was shorter than those of MERS-CoV and SARS-CoV. These findings suggest the difficulty of controlling SARS-CoV-2 infection by antivirals. We further used the viral dynamics model to predict the efficacy of potential antiviral drugs that have different modes of action. The efficacy was measured by the reduction in the viral load area under the curve (AUC). Our results indicate that therapies that block de novo infection or virus production are likely to be effective if and only if initiated before the viral load peak (which appears 2-3 days after symptom onset), but therapies that promote cytotoxicity of infected cells are likely to have effects with less sensitivity to the timing of treatment initiation. Furthermore, combining a therapy that promotes cytotoxicity and one that blocks de novo infection or virus production synergistically reduces the AUC with early treatment. Our unique modeling approach provides insights into the pathogenesis of SARS-CoV-2 and may be useful for development of antiviral therapies.
Asunto(s)
Betacoronavirus/fisiología , COVID-19/terapia , COVID-19/virología , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/transmisión , Infecciones por Coronavirus/terapia , Infecciones por Coronavirus/virología , Humanos , Estudios Longitudinales , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Modelos Biológicos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2/fisiología , Carga Viral/efectos de los fármacosRESUMEN
Viruses evolve in infected host populations, and host population dynamics affect viral evolution. RNA viruses with a short duration of infection and a high peak viral load, such as SARS-CoV-2, are maintained in human populations. By contrast, RNA viruses characterized by a long infection duration and a low peak viral load (e.g., borna disease virus) can be maintained in nonhuman populations, and the process of the evolution of persistent viruses has rarely been explored. Here, using a multi-level modeling approach including both individual-level virus infection dynamics and population-scale transmission, we consider virus evolution based on the host environment, specifically, the effect of the contact history of infected hosts. We found that, with a highly dense contact history, viruses with a high virus production rate but low accuracy are likely to be optimal, resulting in a short infectious period with a high peak viral load. In contrast, with a low-density contact history, viral evolution is toward low virus production but high accuracy, resulting in long infection durations with low peak viral load. Our study sheds light on the origin of persistent viruses and why acute viral infections but not persistent virus infection tends to prevail in human society.
Asunto(s)
COVID-19 , Virosis , Virus , Animales , Humanos , SARS-CoV-2/genética , Virus/genéticaRESUMEN
BACKGROUND: Mpox virus (MPXV) is a zoonotic orthopoxvirus and caused an outbreak in 2022. Although tecovirimat and brincidofovir are approved as anti-smallpox drugs, their effects in mpox patients have not been well documented. In this study, by a drug repurposing approach, we identified potential drug candidates for treating mpox and predicted their clinical impacts by mathematical modeling. METHODS: We screened 132 approved drugs using an MPXV infection cell system. We quantified antiviral activities of potential drug candidates by measuring intracellular viral DNA and analyzed the modes of action by time-of-addition assay and electron microscopic analysis. We further predicted the efficacy of drugs under clinical concentrations by mathematical simulation and examined combination treatment. RESULTS: Atovaquone, mefloquine, and molnupiravir exhibited anti-MPXV activity, with 50% inhibitory concentrations of 0.51-5.2 µM, which was more potent than cidofovir. Whereas mefloquine was suggested to inhibit viral entry, atovaquone and molnupiravir targeted postentry processes. Atovaquone was suggested to exert its activity through inhibiting dihydroorotate dehydrogenase. Combining atovaquone with tecovirimat enhanced the anti-MPXV effect of tecovirimat. Quantitative mathematical simulations predicted that atovaquone can promote viral clearance in patients by 7 days at clinically relevant drug concentrations. CONCLUSIONS: These data suggest that atovaquone would be a potential candidate for treating mpox.
Asunto(s)
Mefloquina , Monkeypox virus , Humanos , Atovacuona/farmacología , Atovacuona/uso terapéutico , Mefloquina/farmacología , Mefloquina/uso terapéutico , Monkeypox virus/efectos de los fármacosRESUMEN
Virus proliferation involves gene replication inside infected cells and transmission to new target cells. Once positive-strand RNA virus has infected a cell, the viral genome serves as a template for copying ("stay-strategy") or is packaged into a progeny virion that will be released extracellularly ("leave-strategy"). The balance between genome replication and virion release determines virus production and transmission efficacy. The ensuing trade-off has not yet been well characterized. In this study, we use hepatitis C virus (HCV) as a model system to study the balance of the two strategies. Combining viral infection cell culture assays with mathematical modeling, we characterize the dynamics of two different HCV strains (JFH-1, a clinical isolate, and Jc1-n, a laboratory strain), which have different viral release characteristics. We found that 0.63% and 1.70% of JFH-1 and Jc1-n intracellular viral RNAs, respectively, are used for producing and releasing progeny virions. Analysis of the Malthusian parameter of the HCV genome (i.e., initial proliferation rate) and the number of de novo infections (i.e., initial transmissibility) suggests that the leave-strategy provides a higher level of initial transmission for Jc1-n, whereas, in contrast, the stay-strategy provides a higher initial proliferation rate for JFH-1. Thus, theoretical-experimental analysis of viral dynamics enables us to better understand the proliferation strategies of viruses, which contributes to the efficient control of virus transmission. Ours is the first study to analyze the stay-leave trade-off during the viral life cycle and the significance of the replication-release switching mechanism for viral proliferation.
Asunto(s)
Genoma Viral , Hepacivirus/genética , Interacciones Huésped-Patógeno/genética , Envejecimiento/fisiología , Línea Celular Tumoral , Proliferación Celular/genética , Hepatitis C , Humanos , Modelos Biológicos , Replicación Viral/genéticaRESUMEN
The coronavirus disease 2019 (COVID-19) pandemic that has been ongoing since 2019 is still ongoing and how to control it is one of the international issues to be addressed. Antiviral drugs that reduce the viral load in terms of reducing the risk of secondary infection are important. For the general control of emerging infectious diseases, establishing an efficient method to evaluate candidate therapeutic agents will lead to a rapid response. We evaluated clinical trial designs for viral entry inhibitors that have the potential to be effective pre-exposure prophylactic drugs in addition to reducing viral load after infection. We used a previously developed simulation of clinical trials based on a mathematical model of within-host viral infection dynamics to evaluate sample sizes in clinical trials of viral entry inhibitors against COVID-19. We assumed four measures as outcomes, namely change in log10-transformed viral load from symptom onset, PCR positive ratio, log10-transformed viral load, and cumulative viral load, and then sample sizes were calculated for drugs with 99 % and 95 % antiviral efficacy. Consistent with previous results, we found that sample sizes could be dramatically reduced for all outcomes used in an analysis by adopting inclusion/exclusion criteria such that only patients in the early post-infection period would be included in a clinical trial. A comparison of sample sizes across outcomes demonstrated an optimal measurement schedule associated with the nature of the outcome measured for the evaluation of drug efficacy. In particular, the sample sizes calculated from the change in viral load and from viral load tended to be small when measurements were taken at earlier time points after treatment initiation. For the cumulative viral load, the sample size was lower than that from the other outcomes when the stricter inclusion/exclusion criteria to include patients whose time since onset is earlier than 2 days was used. We concluded that the design of efficient clinical trials should consider the inclusion/exclusion criteria and measurement schedules, as well as outcome selection based on sample size, personnel and budget needed to conduct the trial, and the importance of the outcome regarding the medical and societal requirements. This study provides insights into clinical trial design for a variety of situations, especially addressing infectious disease prevalence and feasible trial sizes. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antivirales/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Tamaño de la Muestra , Resultado del TratamientoRESUMEN
In HIV-1-infected individuals, transmitted/founder (TF) virus contributes to establish new infection and expands during the acute phase of infection, while chronic control (CC) virus emerges during the chronic phase of infection. TF viruses are more resistant to interferon-alpha (IFN-α)-mediated antiviral effects than CC virus, however, its virological relevance in infected individuals remains unclear. Here we perform an experimental-mathematical investigation and reveal that IFN-α strongly inhibits cell-to-cell infection by CC virus but only weakly affects that by TF virus. Surprisingly, IFN-α enhances cell-free infection of HIV-1, particularly that of CC virus, in a virus-cell density-dependent manner. We further demonstrate that LY6E, an IFN-stimulated gene, can contribute to the density-dependent enhancement of cell-free HIV-1 infection. Altogether, our findings suggest that the major difference between TF and CC viruses can be explained by their resistance to IFN-α-mediated inhibition of cell-to-cell infection and their sensitivity to IFN-α-mediated enhancement of cell-free infection.
Asunto(s)
Infecciones por VIH , VIH-1 , Antivirales , Infecciones por VIH/tratamiento farmacológico , Humanos , Interferón-alfa/farmacologíaRESUMEN
Smoking is one of the risk factors most closely related to the severity of coronavirus disease 2019 (COVID-19). However, the relationship between smoking history and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is unknown. In this study, we evaluated the ACE2 expression level in the lungs of current smokers, ex-smokers, and nonsmokers. The ACE2 expression level of ex-smokers who smoked cigarettes until recently (cessation period shorter than 6 months) was higher than that of nonsmokers and ex-smokers with a long history of nonsmoking (cessation period longer than 6 months). We also showed that the efficiency of SARS-CoV-2 infection was enhanced in a manner dependent on the angiotensin-converting enzyme 2 (ACE2) expression level. Using RNA-seq analysis on the lungs of smokers, we identified that the expression of inflammatory signaling genes was correlated with ACE2 expression. Notably, with increasing duration of smoking cessation among ex-smokers, not only ACE2 expression level but also the expression levels of inflammatory signaling genes decreased. These results indicated that smoking enhances the expression levels of ACE2 and inflammatory signaling genes. Our data suggest that the efficiency of SARS-CoV-2 infection is enhanced by smoking-mediated upregulation of ACE2 expression level.
Asunto(s)
COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/metabolismo , Fumar/efectos adversosRESUMEN
After infecting a host, a viral strain may increase rapidly within the body and produce mutants with a faster proliferation rate than the virus itself. However, most of the mutants become extinct because of the stochasticity caused by the small number of infected cells. In addition, the mean growth rate of a mutant strain decreases with time because the number of susceptible target cells is reduced by the original strain. In this study, we calculated the fraction of mutants that can escape stochastic extinction, based on a continuous-time branching process with a time-dependent growth rate. We analyzed two cases differing in the mode of viral transmission: (1) an infected cell transmits the virus through cell-to-cell contact with a susceptible target cell; (2) an infected cell releases numerous free viral particles that subsequently infect susceptible target cells. The chance for a mutant strain to be established decreases with time after infection of the original type, and it may oscillate before convergence at the stationary value. We then calculated the probability of escaping stochastic extinction for a drug-resistant mutant when a patient received an antiviral drug that suppressed the original strain. Combining the rate of mutant production from the original strain and the chance of escaping stochastic extinction, the number of emerging drug-resistant mutations may have two peaks: one soon after the infection of the original type and the second at the start of antiviral drug administration.
Asunto(s)
Virus , Antivirales/farmacología , Resistencia a Medicamentos , Humanos , Mutación , Probabilidad , Procesos EstocásticosRESUMEN
Human immunodeficiency virus type-1 (HIV-1) attaches to target cells and releases the capsid, an essential component of the viral core that contains viral RNA, into the cytoplasm. After invading target cells, the core structure gradually collapses. The timing of the disassembly of the HIV-1 capsid is essential for efficient viral cDNA synthesis and transport into the nucleus. HIV-1 uncoating is controlled by the host factor maternal embryonic leucine zipper kinase (MELK); however, the quantitative and dynamic relationship between the HIV-1 uncoating process and HIV-1 infection remains unresolved. In this study, we quantified the uncoating process on HIV-1 cDNA synthesis and transport into the nucleus by combining a mathematical model with in vitro data. In addition, detailed in silico simulations demonstrated host factors, including MELK, optimize transport efficiency. Our experimental-mathematical approach revealed quantitative dynamics of the HIV-1 uncoating process, indicating that increasing the speed of uncoating always reduces the amount of HIV-1 cDNA in the nucleus.
Asunto(s)
Infecciones por VIH , VIH-1 , Proteínas de la Cápside/genética , ADN Complementario , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Leucina Zippers , Proteínas Serina-Treonina Quinasas , Desencapsidación ViralRESUMEN
BACKGROUND: Multiple waves of the COVID-19 epidemic have hit most countries by the end of 2021. Most of those waves are caused by emergence and importation of new variants. To prevent importation of new variants, combination of border control and contact tracing is essential. However, the timing of infection inferred by interview is influenced by recall bias and hinders the contact tracing process. METHODS: We propose a novel approach to infer the timing of infection, by employing a within-host model to capture viral load dynamics after the onset of symptoms. We applied this approach to ascertain secondary transmission which can trigger outbreaks. As a demonstration, the 12 initial reported cases in Singapore, which were considered as imported because of their recent travel history to Wuhan, were analyzed to assess whether they are truly imported. RESULTS: Our approach suggested that 6 cases were infected prior to the arrival in Singapore, whereas other 6 cases might have been secondary local infection. Three among the 6 potential secondary transmission cases revealed that they had contact history to previously confirmed cases. CONCLUSIONS: Contact trace combined with our approach using viral load data could be the key to mitigate the risk of importation of new variants by identifying cases as early as possible and inferring the timing of infection with high accuracy.
Asunto(s)
COVID-19 , SARS-CoV-2 , Trazado de Contacto , Humanos , Viaje , Carga ViralRESUMEN
Sodium taurocholate cotransporting polypeptide (NTCP) is a host cell receptor required for hepatitis B virus (HBV) entry. However, the susceptibility of NTCP-expressing cells to HBV is diverse depending on the culture condition. Stimulation with epidermal growth factor (EGF) was found to potentiate cell susceptibility to HBV infection. Here, we show that EGF receptor (EGFR) plays a critical role in HBV virion internalization. In EGFR-knockdown cells, HBV or its preS1-specific fluorescence peptide attached to the cell surface, but its internalization was attenuated. PreS1 internalization and HBV infection could be rescued by complementation with functional EGFR. Interestingly, the HBV/preS1-NTCP complex at the cell surface was internalized concomitant with the endocytotic relocalization of EGFR. Molecular interaction between NTCP and EGFR was documented by immunoprecipitation assay. Upon dissociation from functional EGFR, NTCP no longer functioned to support viral infection, as demonstrated by either (i) the introduction of NTCP point mutation that disrupted its interaction with EGFR, (ii) the detrimental effect of decoy peptide interrupting the NTCP-EGFR interaction, or (iii) the pharmacological inactivation of EGFR. Together, these data support the crucial role of EGFR in mediating HBV-NTCP internalization into susceptible cells. EGFR thus provides a yet unidentified missing link from the cell-surface HBV-NTCP attachment to the viral invasion beyond the host cell membrane.
Asunto(s)
Virus de la Hepatitis B , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Internalización del Virus , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Hep G2 , Virus de la Hepatitis B/patogenicidad , Virus de la Hepatitis B/fisiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/genética , Simportadores/metabolismoRESUMEN
In a current life sciences research, we are in an era in which advanced technology emerging and utilize big data. Data-driven approaches such as machine learnings play an important role to analyze these datasets. However, limited clinical (time-course) datasets are available for infectious diseases, cancer, and other diseases. Especially in the case of emerging infectious disease outbreaks, clinical data obtained from a limited number of cases must be used to develop treatment strategies and public health policies. This means that many clinical data are not big data, which often makes the application of data-driven approaches difficult. In this paper, we mainly apply a mathematical model-based approach to the clinical data of COVID-19 and discuss how biologically important information can be extracted from the limited data and how they can benefit society.
RESUMEN
Sodium taurocholate cotransporting polypeptide (NTCP) is expressed at the surface of human hepatocytes and functions as an entry receptor of hepatitis B virus (HBV). Recently, we have reported that epidermal growth factor receptor (EGFR) is involved in NTCP-mediated viral internalization during the cell entry process. Here, we analyzed which function of EGFR is essential for mediating HBV internalization. In contrast to the reported crucial function of EGFR-downstream signaling for the entry of hepatitis C virus (HCV), blockade of EGFR-downstream signaling proteins, including mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT), had no or only minor effects on HBV infection. Instead, deficiency of EGFR endocytosis resulting from either a deleterious mutation in EGFR or genetic knockdown of endocytosis adaptor molecules abrogated internalization of HBV via NTCP and prevented viral infection. EGFR activation triggered a time-dependent relocalization of HBV preS1 to the early and late endosomes and to lysosomes in concert with EGFR transport. Suppression of EGFR ubiquitination by site-directed mutagenesis or by knocking down two EGFR-sorting molecules, signal-transducing adaptor molecule (STAM) and lysosomal protein transmembrane 4ß (LAPTM4B), suggested that EGFR transport to the late endosome is critical for efficient HBV infection. Cumulatively, these results support the idea that the EGFR endocytosis/sorting machinery drives the translocation of NTCP-bound HBV from the cell surface to the endosomal network, which eventually enables productive viral infection.
Asunto(s)
Endocitosis/genética , Endosomas/genética , Receptores ErbB/genética , Hepatitis B/genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/química , Receptores ErbB/química , Células Hep G2 , Hepacivirus/química , Hepacivirus/genética , Hepacivirus/patogenicidad , Hepatitis B/metabolismo , Hepatitis B/virología , Virus de la Hepatitis B/química , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/patogenicidad , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , MAP Quinasa Quinasa 1/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Transportadores de Anión Orgánico Sodio-Dependiente , Fosfatidilinositol 3-Quinasas/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Factores de Transcripción STAT/genética , Simportadores , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Internalización del VirusRESUMEN
BACKGROUND: Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. METHODS AND FINDINGS: A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value < 0.001). The mean decay rates were 1.17 d-1 (95% CI: 1.06 to 1.27 d-1), 0.777 d-1 (0.716 to 0.838 d-1), and 0.450 d-1 (0.378 to 0.522 d-1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). Subsequently, we mimicked randomized controlled trials of antivirals by simulation. An antiviral effect causing a 95% to 99% reduction in viral replication was added to the model. To be realistic, we assumed that randomization and treatment are initiated with some time lag after symptom onset. Using the duration of virus shedding as an outcome, the sample size to detect a statistically significant mean difference between the treatment and placebo groups (1:1 allocation) was 13,603 and 11,670 (when the antiviral effect was 95% and 99%, respectively) per group if all patients are enrolled regardless of timing of randomization. The sample size was reduced to 584 and 458 (when the antiviral effect was 95% and 99%, respectively) if only patients who are treated within 1 day of symptom onset are enrolled. We confirmed the sample size was similarly reduced when using cumulative viral load in log scale as an outcome. We used a conventional virus dynamics model, which may not fully reflect the detailed mechanisms of viral dynamics of SARS-CoV-2. The model needs to be calibrated in terms of both parameter settings and model structure, which would yield more reliable sample size calculation. CONCLUSIONS: In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.
Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Ensayos Clínicos Controlados Aleatorios como Asunto , Tamaño de la Muestra , Humanos , Modelos Biológicos , SARS-CoV-2 , Resultado del Tratamiento , Carga Viral , Replicación Viral , Esparcimiento de VirusRESUMEN
Endogenous retroviruses have demonstrated exaptation during long-term evolution with hosts, e.g., resulting in acquisition of antiviral effect on related extant viral infections. While empirical studies have found that an endogenous bornavirus-like element derived from viral nucleoprotein (itEBLN) in the ground squirrel genome shows antiviral effect on virus replication and de novo infection, the antiviral mechanism, dynamics, and quantitative effect of itEBLN remain unknown. In this study, we experimentally and theoretically investigated the dynamics of how an extant bornavirus, Borna disease virus 1 (BoDV-1), spreads and replicates in uninfected, BoDV-1-infected, and itEBLN-expressing cultured cells. Quantifying antiviral effect based on time course data sets, we found that the antiviral effects of itEBLN are estimated to be 75% and 34% on intercellular virus spread and intracellular virus replication, respectively. This discrepancy between intercellular virus spread and intracellular viral replication suggests that viral processes other than the replication of viral ribonucleoprotein complex (RNP) contributed to the suppression of virus spread in itEBLN-expressing cells. Because itEBLN binds to the BoDV-1 RNP, the suppression of viral RNP trafficking can be an attractive candidate explaining this discrepancy.IMPORTANCE Accumulating evidence suggests that some endogenous viral elements (EVEs), including endogenous retroviruses and endogenous nonretroviral virus elements, have acquired functions in the host as a result of long-term coevolution. Recently, an endogenous bornavirus-like element (itEBLN) found in the ground squirrel genome has been shown to have antiviral activity against exogenous bornavirus infection. In this study, we first quantified bornavirus spread in cultured cells and then calculated the antiviral activity of itEBLN on bornavirus infection. The calculated antiviral activity of itEBLN suggests its suppression of multiple processes in the viral life cycle. To our knowledge, this is the first study quantifying the antiviral activity of EVEs and speculating on a model of how some EVEs have acquired antiviral activity during host-virus arms races.