Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Expert Opin Emerg Drugs ; 28(4): 333-351, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38099328

RESUMEN

INTRODUCTION: Endometriosis is an estrogen-dependent disease that gives rise to pelvic pain and infertility. Although estroprogestins and progestins currently stand as the first-line treatments for this condition, demonstrating efficacy in two-thirds of patients, a significant portion of individuals experience only partial relief or symptom recurrence following the cessation of these therapies. The coexistence of superficial, deep endometriosis, and ovarian endometriomas, as three distinct phenotypes with unique pathogenetic and molecular characteristics, may elucidate the current heterogeneous biological response to available therapy. AREAS COVERED: The objective of this review is to furnish the reader with a comprehensive summary pertaining to phase II-III hormonal treatments for endometriosis. EXPERT OPINION: Ongoing research endeavors are directed toward the development of novel hormonal options for this benign yet debilitating disease. Among them, oral GnRH antagonists emerge as a noteworthy option, furnishing rapid therapeutic onset without an initial flare-up; these drugs facilitate partial or complete estrogen suppression, and promote prompt ovarian function recovery upon discontinuation, effectively surmounting the limitations associated with previously employed GnRH agonists. Limited evidence supports the use of selective estrogen and progesterone receptor modulators. Consequently, further extensive clinical research is imperative to garner a more profound understanding of innovative targets for novel hormonal options.


Asunto(s)
Endometriosis , Femenino , Humanos , Endometriosis/tratamiento farmacológico , Endometriosis/complicaciones , Endometriosis/patología , Antagonistas de Hormonas/farmacología , Antagonistas de Hormonas/uso terapéutico , Progestinas/farmacología , Progestinas/uso terapéutico , Estrógenos/uso terapéutico , Hormona Liberadora de Gonadotropina/uso terapéutico , Ensayos Clínicos Fase II como Asunto
2.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511536

RESUMEN

BACKGROUND: Let-7 is a tumor suppressor microRNA targeting the KRAS lung oncogene. Let-7a downregulation is reversible during the early stages of lung carcinogenesis but is irreversible in cancer cells. The aim of this study is to shed light on the relationship between oncogene (KRAS) mutation and let-7a downregulation in cigarette smoke (CS)-induced lung carcinogenesis. METHODS: A total of 184 strain H Swiss albino mice were either unexposed (control) or exposed to CS for 2 weeks (short CS) or 8 months (long CS). After 8 months, the lungs were individually collected. The following end points have been evaluated: (a) DNA methylation of the let-7a gene promoter by bisulphite-PCR and pyrosequencing; (b) let-7a expression by qPCR; (c) KRAS mutation by DNA pyrosequencing; (d) cancer incidence by histopathological examination. RESULTS: let-7a expression decreased by 8.3% in the mice exposed to CS for two weeks (CS short) and by 33.4% (p ≤ 0.01) in the mice exposed to CS for 8 months (CS long). No significant difference was detected in the rate of let-7a-promoter methylation between the Sham-exposed mice (55.1%) and the CS short-(53%) or CS long (51%)-exposed mice. The percentage of G/T transversions in KRAS codons 12 and 13 increased from 2.3% (Sham) to 6.4% in CS short- and to 11.5% in CS long-exposed mice. Cancer incidence increased significantly in the CS long-exposed mice (11%) as compared to both the Sham (4%) and the CS short-exposed (2%) mice. In the CS long-exposed mice, the correlation between let-7a expression and the number of KRAS mutations was positive (R = +0.5506) in the cancer-free mice and negative (R = -0.5568) in the cancer-bearing mice. CONCLUSIONS: The effects of CS-induced mutations in KRAS are neutralized by the high expression of let-7a in cancer-free mice (positive correlation) but not in cancer-bearing mice where an irreversible let-7a downregulation occurs (negative correlation). This result provides evidence that both genetic (high load of KRAS mutation) and epigenetic alterations (let-7a irreversible downregulation) are required to produce lung cancer in CS-exposed organisms.


Asunto(s)
Fumar Cigarrillos , Neoplasias Pulmonares , MicroARNs , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Regulación hacia Abajo/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Mutación , Carcinogénesis
3.
Invest New Drugs ; 40(6): 1185-1193, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35976541

RESUMEN

Macrocyclic compounds meso-(p-acetamidophenyl)-calix[4]pyrrole and meso-(m-acetamidophenyl)-calix[4]pyrrole have previously been reported to exhibit cytotoxic properties towards lung cancer cells. Here, we report pre-clinical in vitro and in vivo studies showing that these calixpyrrole derivatives can inhibit cell growth in both PC3 and DU145 prostatic cancer cell lines. We explored the impact of these compounds on programmed cell death, as well as their ability to inhibit cellular invasion. In this study we have demonstrated the safety of these macrocyclic compounds by cytotoxicity tests on ex-vivo human peripheral blood mononuclear cells (PBMCs), and by in vivo subcutaneous administration. Preliminary in vivo tests demonstrated no hepato-, no nephro- and no genotoxicity in Balb/c mice compared to controls treated with cisplatin. These findings suggest these calixpyrroles might be novel therapeutic tools for the treatment of prostate cancer and of particular interest for the treatment of androgen-independent castration-resistant prostate cancer.


Asunto(s)
Antineoplásicos , Poríferos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Ratones , Animales , Humanos , Pirroles/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral , Leucocitos Mononucleares , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones Endogámicos BALB C
4.
Environ Res ; 207: 112215, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34656631

RESUMEN

OBJECTIVE: According to the World Health Organization, radon is the second leading cause of lung cancer after smoking. Cell free circulating mitochondrial DNA (cf mtDNA) have been used not only as a biomarker of carcinogenesis but also as a biomarker of exposure to radiation, but nothing is known about changes in the level of cf mtDNA following radon exposure. Therefore, the purpose of this study was to estimate the cf mtDNA copy number as a biomarker of the response to radon exposure in lung cancer pathogenesis. METHODS: 207 subjects were examined including 41 radon-exposed lung cancer patients, 40 lung cancer patients without radon exposure and 126 healthy controls exposed/not exposed to high level of radon. Total cell free circulating DNA from blood samples was extracted and used to detect cell free circulating mitochondrial DNA copy number by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Our data indicate that the level of cf mtDNA in the radon-induced lung cancer patients was significantly higher than that of the other study participants. There was a significant difference in the level of cf mtDNA in the blood plasma of healthy volunteers exposed and not exposed to high doses of radon. Moreover, in healthy volunteers living in areas with high radon levels, the mtDNA copy number was higher than that in patients with lung cancer who were not exposed to high doses of radon. CONCLUSION: Our study provides evidence for a possible role of cf mtDNA as a promising biomarker of lung cancer induced by exposure to high dose of radon.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Radón , ADN Mitocondrial/genética , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Mitocondrias/genética , Radón/toxicidad
5.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203322

RESUMEN

BACKGROUND: In space, the reduction or loss of the gravity vector greatly affects the interaction between cells. Since the beginning of the space age, microgravity has been identified as an informative tool in biomedicine, including cancer research. The A549 cell line is a hypotriploid human alveolar basal epithelial cell line widely used as a model for lung adenocarcinoma. Microgravity has been reported to interfere with mitochondrial activity, energy metabolism, cell vitality and proliferation, chemosensitivity, invasion and morphology of cells and organelles in various biological systems. Concerning lung cancer, several studies have reported the ability of microgravity to modulate the carcinogenic and metastatic process. To investigate these processes, A549 cells were exposed to simulated microgravity (µG) for different time points. METHODS: We performed cell cycle and proliferation assays, ultrastructural analysis of mitochondria architecture, as well as a global analysis of miRNA modulated under µG conditions. RESULTS: The exposure of A549 cells to microgravity is accompanied by the generation of polynucleated cells, cell cycle imbalance, growth inhibition, and gross morphological abnormalities, the most evident are highly damaged mitochondria. Global miRNA analysis defined a pool of miRNAs associated with µG solicitation mainly involved in cell cycle regulation, apoptosis, and stress response. To our knowledge, this is the first global miRNA analysis of A549 exposed to microgravity reported. Despite these results, it is not possible to draw any conclusion concerning the ability of µG to interfere with the cancerogenic or the metastatic processes in A549 cells. CONCLUSIONS: Our results provide evidence that mitochondria are strongly sensitive to µG. We suggest that mitochondria damage might in turn trigger miRNA modulation related to cell cycle imbalance.


Asunto(s)
MicroARNs/metabolismo , Mitocondrias/metabolismo , Células A549 , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Metabolismo Energético/fisiología , Humanos
6.
Carcinogenesis ; 41(1): 91-99, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31562745

RESUMEN

Chronic inflammation plays a crucial role in the carcinogenesis process and, in particular, in smoking-related carcinogenesis. Therefore, anti-inflammatory agents provide an interesting perspective in the prevention of smoking-associated cancers. Among nonsteroidal anti-inflammatory drugs (NSAIDs), licofelone is a triple inhibitor of both cyclooxygenases (COX-1 and COX-2) and of 5-lipooxygenase (5-LOX) that has shown some encouraging results in cancer prevention models. We previously showed that the dietary administration of licofelone, starting after weanling, to Swiss H mice exposed for 4 months to mainstream cigarette smoke since birth attenuated preneoplastic lesions of inflammatory nature in both lung and urinary tract, and had some effects on the yield of lung tumors at 7.5 months of age. The present study aimed at evaluating the early modulation by licofelone of pulmonary DNA and RNA alterations either in smoke-free or smoke-exposed H mice after 10 weeks of exposure. Licofelone protected the mice from the smoke-induced loss of body weight and significantly attenuated smoke-induced nucleotide alterations by decreasing the levels of bulky DNA adducts and 8-hydroxy-2'-deoxyguanosine in mouse lung. Moreover, the drug counteracted dysregulation by smoke of several pulmonary microRNAs involved in stress response, inflammation, apoptosis, and oncogene suppression. However, even in smoke-free mice administration of the drug had significant effects on a broad panel of microRNAs and, as assessed in a subset of mice used in a parallel cancer chemoprevention study, licofelone even enhanced the smoke-induced systemic genotoxic damage after 4 months of exposure. Therefore, caution should be paid when administering licofelone to smokers for long periods.


Asunto(s)
Anticarcinógenos/administración & dosificación , Daño del ADN/efectos de los fármacos , Inflamación/tratamiento farmacológico , Neoplasias Pulmonares/prevención & control , Pirroles/administración & dosificación , Contaminación por Humo de Tabaco/efectos adversos , Animales , Anticarcinógenos/toxicidad , Araquidonato 5-Lipooxigenasa/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Aductos de ADN/inmunología , Aductos de ADN/metabolismo , Modelos Animales de Enfermedad , Esquema de Medicación , Femenino , Humanos , Inflamación/etiología , Inflamación/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Ratones , MicroARNs/inmunología , MicroARNs/metabolismo , Pirroles/toxicidad , Factores de Tiempo , Pruebas de Toxicidad Subcrónica
7.
J Cell Physiol ; 235(4): 3508-3518, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31549411

RESUMEN

Muscle loss is a major problem for many in lifetime. Muscle and bone degeneration has also been observed in individuals exposed to microgravity and in unloading conditions. C2C12 myoblst cells are able to form myotubes, and myofibers and these cells have been employed for muscle regeneration purposes and in myogenic regeneration and transplantation studies. We exposed C2C12 cells in an random position machine to simulate microgravity and study the energy and the biochemical challenges associated with this treatment. Simulated microgravity exposed C2C12 cells maintain positive proliferation indices and delay the differentiation process for several days. On the other hand this treatment significantly alters many of the biochemical and the metabolic characteristics of the cell cultures including calcium homeostasis. Recent data have shown that these perturbations are due to the inhibition of the ryanodine receptors on the membranes of intracellular calcium stores. We were able to reverse this perturbations treating cells with thapsigargin which prevents the segregation of intracellular calcium ions in the mitochondria and in the sarco/endoplasmic reticula. Calcium homeostasis appear a key target of microgravity exposure. In conclusion, in this study we reported some of the effects induced by the exposure of C2C12 cell cultures to simulated microgravity. The promising information obtained is of fundamental importance in the hope to employ this protocol in the field of regenerative medicine.


Asunto(s)
Diferenciación Celular/fisiología , Desarrollo de Músculos/fisiología , Regeneración/efectos de la radiación , Ingravidez/efectos adversos , Animales , Señalización del Calcio/efectos de la radiación , Diferenciación Celular/genética , Línea Celular , Proliferación Celular/efectos de la radiación , Humanos , Ratones , Desarrollo de Músculos/efectos de la radiación , Fibras Musculares Esqueléticas/efectos de la radiación , Mioblastos/metabolismo , Mioblastos/efectos de la radiación , Simulación de Ingravidez/efectos adversos
8.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32245099

RESUMEN

Radon is the number one cause of lung cancer in non-smokers. microRNA expression in human bronchial epithelium cells is altered by radon, with particular reference to upregulation of miR-16, miR-15, miR-23, miR-19, miR-125, and downregulation of let-7, miR-194, miR-373, miR-124, miR-146, miR-369, and miR-652. These alterations alter cell cycle, oxidative stress, inflammation, oncogene suppression, and malignant transformation. Also DNA methylation is altered as a consequence of miR-29 modification induced by radon. Indeed miR-29 targets DNA methyltransferases causing inhibition of CpG sites methylation. Massive microRNA dysregulation occurs in the lung due to radon expose and is functionally related with the resulting lung damage. However, in humans this massive lung microRNA alterations only barely reflect onto blood microRNAs. Indeed, blood miR-19 was not found altered in radon-exposed subjects. Thus, microRNAs are massively dysregulated in experimental models of radon lung carcinogenesis. In humans these events are initially adaptive being aimed at inhibiting neoplastic transformation. Only in case of long-term exposure to radon, microRNA alterations lead towards cancer development. Accordingly, it is difficult in human to establish a microRNA signature reflecting radon exposure. Additional studies are required to understand the role of microRNAs in pathogenesis of radon-induced lung cancer.


Asunto(s)
Monitoreo Biológico , Neoplasias Pulmonares/genética , MicroARNs/genética , Radón/metabolismo , Animales , Epigénesis Genética , Humanos , Neoplasias Pulmonares/epidemiología , MicroARNs/metabolismo , Exposición a la Radiación/efectos adversos
9.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992730

RESUMEN

The exposure of living organisms to environmental stress triggers defensive responses resulting in the activation of protective processes. Whenever the exposure occurs at low doses, defensive effects overwhelm the adverse effects of the exposure; this adaptive situation is referred to as "hormesis". Environmental, physical, and nutritional hormetins lead to the stimulation and strengthening of the maintenance and repair systems in cells and tissues. Exercise, heat, and irradiation are examples of physical hormetins, which activate heat shock-, DNA repair-, and anti-oxidative-stress responses. The health promoting effect of many bio-actives in fruits and vegetables can be seen as the effect of mildly toxic compounds triggering this adaptive stimulus. Numerous studies indicate that living organisms possess the ability to adapt to adverse environmental conditions, as exemplified by the fact that DNA damage and gene expression profiling in populations living in the environment with high levels of air pollution do not correspond to the concentrations of pollutants. The molecular mechanisms of the hormetic response include modulation of (a) transcription factor Nrf2 activating the synthesis of glutathione and the subsequent protection of the cell; (b) DNA methylation; and (c) microRNA. These findings provide evidence that hormesis is a toxicological event, occurring at low exposure doses to environmental stressors, having the benefit for the maintenance of a healthy status.


Asunto(s)
Adaptación Fisiológica , Epigénesis Genética , Hormesis , Estrés Fisiológico , Animales , Daño del ADN , Regulación de la Expresión Génica , Humanos , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA