Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Angew Chem Int Ed Engl ; 63(3): e202313379, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37815889

RESUMEN

Covering an exceptionally wide range of bond strengths, the dynamic nature and facile tunability of dative B-N bonds is highly attractive when it comes to the assembly of supramolecular polymers and materials. This Minireview offers an overview of advances in the development of functional materials where Lewis pairs (LPs) play a key role in their assembly and critically influence their properties. Specifically, we describe the reversible assembly of linear polymers with interesting optical, electronic and catalytic properties, discrete macrocycles and molecular cages that take up diverse guest molecules and undergo structural changes triggered by external stimuli, covalent organic frameworks (COFs) with intriguing interlocked structures that can embed and separate gases such as CO2 and acetylene, and soft polymer networks that serve as recyclable, self-healing, and responsive thermosets, gels and elastomeric materials.

2.
Angew Chem Int Ed Engl ; : e202411855, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976519

RESUMEN

Acenes are attractive as building blocks for low gap organic materials with applications, for example, in organic light emitting diodes, solar cells, bioimaging and diagnostics. Previously, we have shown that modification of dipyridylanthracene via B-N Lewis pair fusion (BDPA) strongly redshifts the emission, while facilitating self-sensitized reactivity toward O2 to reversibly generate the corresponding endoperoxides. Herein, we report on the further expansion of the p-system of BDPA to a vinyl-substituted monomer, vinylene-bridged dimer, and a polymer with an average of 20 chromophores. The extension of π-conjugation results in largely reduced band gaps of 1.8 eV for the dimer and 1.7 eV for the polymer, the latter giving rise to NIR emission with a maximum at 731 nm and an appreciable quantum yield of 7%. Electrochemical and computational studies reveal efficient delocalization of the lowest unoccupied molecular orbital (LUMO) along the pyridyl-anthracene-pyridyl axis, which results in effective electronic communication between BDPA units, selectively lowers the LUMO, and ultimately narrows the band gap. Time-resolved emission and transient absorption (TA) measurements offer insights into the pertinent photophysical processes. Extension of π-conjugation also slows down the self-sensitized formation of endoperoxides, while significantly accelerating the thermal release of singlet oxygen to regenerate the parent acenes.

3.
Chemistry ; 29(18): e202203619, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36562302

RESUMEN

Main-chain boron-containing π-conjugated polymers are attractive for organic electronic, sensing, and imaging applications. Alternating terthiophene-borane polymers were prepared and the effects of regioisomeric attachment of the conjugated linker and variations in the electronic effect of the pendent aryl groups (2,4,6-tri-tert-butylphenyl, Mes*; 2,4,6-tris(trifluoromethyl)phenyl, FMes) examined. Pd2 dba3 /P(t-Bu)3 -catalyzed Stille polymerization of arylbis(2-thienyl)borane and arylbis(3-thienylborane) with 2,5-bis(trimethylstannyl)thiophene at 120 °C gave polymers with appreciable molecular weight but MALDI-TOF MS analyses showed evidence of unusually prominent homocoupling. These defects could be suppressed by using brominated rather than iodinated monomers, more hindered 2,5-bis(tri-n-butylstannyl)thiophene as comonomer, and Pd2 dba3 /P(o-tol)3 as the catalyst at 100 °C. Under these conditions, macrocyclic species with n=3-10 repeating units formed preferentially according to MALDI-TOF MS analyses. Photophysical studies revealed a prominent effect of the regiochemistry and the nature of the pendent aryl groups on the absorption and emission, giving rise to orange, yellow-green, blue-green, and blue emissive materials respectively. The electronic effects were rationalized through DFT calculations on bis(terthiophene) model systems.

4.
J Am Chem Soc ; 144(41): 18908-18917, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36194812

RESUMEN

B-N-fused dianthracenylpyrazine derivatives are synthesized to generate new low gap chromophores. Photophysical and electrochemical, crystal packing, and theoretical studies have been performed. Two energetically similar conformers are identified by density functional theory calculations, showing that the core unit adopts a curved saddle-like shape (x-isomer) or a zig-zag conformation (z-isomer). In the solid state, the z-isomer is prevalent according to an X-ray crystal structure of a C6F5-substituted derivative (4-Pf), but variable-temperature nuclear magnetic resonance studies suggest a dynamic behavior in solution. B-N fusion results in a large decrease of the HOMO-LUMO gap and dramatically lowers the LUMO energy compared to the all-carbon analogues. 4-Pf in particular shows significant absorbance at greater than 700 nm while being almost transparent throughout the visible region. After encapsulation in the biodegradable polymer DSPE-mPEG2000, 4-Pf nanoparticles (4-Pf-NPs) exhibit good water solubility, high photostability, and an excellent photothermal conversion efficiency of ∼41.8%. 4-Pf-NPs are evaluated both in vitro and in vivo as photothermal therapeutic agents. These results uncover B-N Lewis pair functionalization of PAHs as a promising strategy toward new NIR-absorbing materials for photothermal applications.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Antracenos , Isomerismo , Polímeros/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Electrónica , Carbono , Agua , Fototerapia
5.
J Am Chem Soc ; 144(30): 13704-13716, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35868238

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are prominent lead structures for organic optoelectronic materials. This work describes the synthesis of three B,S-doped PAHs with heptacene-type scaffolds via nucleophilic aromatic substitution reactions between fluorinated arylborane precursors and 1,2-(Me3SiS)2C6H4/1,8-diazabicyclo[5.4.0]undec-7-ene (72-92% yield). All compounds contain tricoordinate B atoms at their 7,16-positions, kinetically protected by mesityl (Mes) substituents. PAHs 1/2 feature two/four S atoms at their 5,18-/5,9,14,18-positions; PAH 3 is a 6,8,15,17-tetrafluoro derivative of 2. For comparison, we also prepared the skewed naphtho[2,3-c]pentaphene-type isomer 4. The simultaneous presence of electron-accepting B atoms and electron-donating S atoms results in a redox-ambiphilic behavior; the radical cations [1•]+ and [2•]+ were characterized by electron paramagnetic resonance spectroscopy. Several low-lying charge-transfer states exist, some of which (especially S-to-B and Mes-to-B transitions) compete on the excited-state potential-energy surface. Consistent with the calculated state characters and oscillator strengths, this competition results in a spread of fluorescence quantum yields (2-27%). The optoelectronic properties of 1 change drastically upon addition of Ag+ ions: while the color of 1 in CH2Cl2 changes bathochromically from yellow to red (λmax from 463 to 486 nm; -0.13 eV), the emission band shifts hypsochromically from 606 to 545 nm (+0.23 eV), and the fluorescence quantum yield increases from 12 to 43%. According to titration experiments, higher order adducts [Agn1m]n+ are formed. As a suitable system for modeling Ag+ complexation, our calculations predict a dimer structure (n = m = 2) with Ag2S4 core, approximately linear S-Ag-S fragments, and Ag-Ag interaction. The computed optoelectronic properties of [Ag212]2+ agree well with the experimentally observed ones.

6.
Angew Chem Int Ed Engl ; 61(5): e202113075, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34847268

RESUMEN

The functionalization of polycyclic aromatic hydrocarbons (PAHs) via B←N Lewis pair formation offers an opportunity to judiciously fine-tune the structural features and optoelectronic properties, to suit the demands of applications in organic electronic devices, bioimaging, and as sensitizers for singlet oxygen generation. We demonstrate that the N-directed electrophilic borylation of 2,6-di(pyrid-2-yl)anthracene offers access to linearly extended acene derivatives Py-BR (R=Et, Ph, C6 F5 ). In comparison to indeno-fused 9,10-diphenylanthracene, the formal "BN for CC" replacement in Py-BR selectively lowers the LUMO, resulting in a much reduced HOMO-LUMO gap. An even more extended conjugated system with seven six-membered rings in a row (Qu-BEt) is obtained by borylation of 2,6-di(quinolin-8-yl)anthracene. Fluorinated Py-BPf shows particularly advantageous properties, including relatively lower-lying HOMO and LUMO levels, strong yellow-green fluorescence, and effective singlet oxygen sensitization, while resisting self-sensitized conversion to its endoperoxide.

7.
Angew Chem Int Ed Engl ; 61(20): e202200612, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35257455

RESUMEN

We herein describe a new design principle to achieve B/N-doped cyclophane where an electron-donor block of three triarylamines (Ar3 N) and an acceptor block of three triarylboranes (Ar3 B) are spatially separated on opposite sides of the π-extended ring system. DFT computations revealed the distinct electronic structure of the block-type macrocycle MC-b-B3N3 with a greatly enhanced dipole moment and reduced HOMO-LUMO energy gap in comparison to its analogue with alternating B and N sites, MC-alt-B3N3. The unique arrangement of borane acceptor Ar3 B and amine donor Ar3 N components in MC-b-B3N3 induces exceptionally strong intramolecular charge transfer in the excited state, which is reflected in a largely red-shifted luminescence at 612 nm in solution. The respective linear open-chain oligomer L-b-B3N3 was also synthesized for comparison. Our new approach to donor-acceptor macrocycles offers important fundamental insights and opens up a new avenue to unique optoelectronic materials.

8.
Angew Chem Int Ed Engl ; 61(51): e202213615, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36287039

RESUMEN

Ultralong afterglow emissions due to room-temperature phosphorescence (RTP) are of paramount importance in the advancement of smart sensors, bioimaging and light-emitting devices. We herein present an efficient approach to achieve rarely accessible phosphorescence of heavy atom-free organoboranes via photochemical switching of sterically tunable fluorescent Lewis pairs (LPs). LPs are widely applied in and well-known for their outstanding performance in catalysis and supramolecular soft materials but have not thus far been exploited to develop photo-responsive RTP materials. The intramolecular LP M1BNM not only shows a dynamic response to thermal treatment due to reversible N→B coordination but crystals of M1BNM also undergo rapid photochromic switching. As a result, unusual emission switching from short-lived fluorescence to long-lived phosphorescence (rad-M1BNM, τRTP =232 ms) is observed. The reported discoveries in the field of Lewis pairs chemistry offer important insights into their structural dynamics, while also pointing to new opportunities for photoactive materials with implications for fast responsive detectors.

9.
Chemistry ; 27(9): 2973-2986, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32852793

RESUMEN

The extension of conjugated organoboranes from monomeric species to oligomers, macrocycles, and polymers offers access to a plethora of fascinating new materials. The p-π* conjugation between empty orbitals on boron and the conjugated linkers not only affects the electronic structure and optical properties, but also enables mutual interactions between electron-deficient boron centers. The unique properties of these electron-deficient π-conjugated systems are exploited in highly luminescent materials, organic optoelectronic devices, and sensing applications.

10.
Chemistry ; 27(10): 3306-3314, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33314389

RESUMEN

The introduction of unconventional elements into π-conjugated systems has been studied to manipulate the electronic states and properties of compounds. Herein, boron- and germanium-containing hybrid macrocycles, as a new class of element-hybrid conjugated systems, have been synthesized. The palladium-catalyzed Stille cross coupling of bis(bromothienyl)borane and bis(trimethylstannylthienyl)- or bis(trimethylstannylphenyl)-substituted dithienogermoles as the boron- and germanium-containing building blocks, respectively, produced a mixture of several macrocyclic compounds. Single-crystal X-ray analysis of the 2:2 coupling product revealed a planar structure with a cavity inside the macrocycle. The optical properties of the macrocyclic products indicated rather small electronic interactions between the building units. However, intramolecular photoenergy transfer from the dithienogermole unit to the boron unit was clearly observed with respect to the fluorescence spectra.

11.
Angew Chem Int Ed Engl ; 60(33): 17942-17946, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34111328

RESUMEN

Polycationic macrocycles are attractive as they display unique molecular switching capabilities arising from their redox properties. Although diverse polycationic macrocycles have been developed, those based on cationic boron systems remain very limited. We present herein the development of novel polycationic macrocycles by introducing organoboronium moieties into a conjugated organoboron macrocyclic framework. These macrocycles consist of four bipyridylboronium units that are connected by fluorene and either electron-deficient arylborane or electron-rich arylamine moieties. Electrochemical studies reveal that the macrocycles undergo reversible multi-step redox processes with transfer of up to 10 electrons. Switchable electrochromic behavior is demonstrated via spectroelectrochemical studies and the observed color changes are rationalized by correlation with computed electronic transitions using DFT methods.

12.
J Am Chem Soc ; 142(34): 14427-14431, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32787237

RESUMEN

Although widely used in catalysis, the multistep syntheses and high loadings typically employed are limiting broader implementation of highly active tailor-made arylborane Lewis acids and Lewis pairs. Attempts at developing recyclable systems have thus far met with limited success, as general and versatile platforms are yet to be developed. We demonstrate a novel approach that is based on the excellent control and functional group tolerance of ring-opening metathesis polymerization (ROMP). The ROMP of highly Lewis acidic borane-functionalized phenylnorbornenes afforded both a soluble linear copolymer and a cross-linked organogel. The polymers proved highly efficient as recyclable catalysts in the reductive N-alkylation of arylamines under mild conditions and at exceptionally low catalyst loadings. The modular design presented herein can be readily adapted to other finely tuned triarylboranes, enabling wide applications of ROMP-borane polymers as well-defined supported organocatalysts.

13.
Chemistry ; 26(4): 873-880, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31691387

RESUMEN

Triarylboranes that exhibit p-π* conjugation serve as versatile building blocks to design n-type organic/polymer semiconductors. A series of new molecular acceptors based on triarylborane is reported here. These molecules are designed with a boron atom that bears a bulky 2,4,6-tri-tert-butylphenyl (Mes*) substituent at the core and strong electron-withdrawing 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC) units as the end-capping groups that are linked to the core by bithiophene bridges. Butyl or butoxy groups are introduced to the bithiophene units to tune the optoelectronic properties. These molecules show nearly planar backbones with highly localized steric hindrance at the core, low LUMO/HOMO energy levels, and broad absorption bands spanning the visible region, which are all very desirable characteristics for use as electron acceptors in organic solar cell (OSC) applications. The attachment of butyl groups to the bithiophene bridges brings about a slightly twisted backbone, which in turn promotes good solubility and homogeneous donor/acceptor blend morphology, whereas the introduction of butoxy groups leads to improved planarity, favorable stacking in the film state, and a greatly reduced band gap. OSC devices based on these molecules exhibit encouraging photovoltaic performances with power conversion efficiencies reaching up to 4.07 %. These results further substantiate the strong potential of triarylboranes as the core unit of small molecule acceptors for OSC applications.

14.
Angew Chem Int Ed Engl ; 59(22): 8689-8697, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32129932

RESUMEN

We introduce a new boron-doped cyclophane, the hexabora[16 ]cyclophane B6-F Mes, in which six tricoordinate borane moieties alternate with short conjugated p-phenylene linkers. Exocyclic 2,4,6-tris(trifluoromethyl)phenyl (F Mes) groups serve not only to further withdraw electron density but at the same time sterically shield the boron atoms, resulting in a macrocycle that is both highly electron-deficient and stable. The optical and electronic properties are compared with those of related linear oligomers and the electronic structure is further evaluated by computational methods. The studies uncover unique properties of B6-F Mes, including a low-lying and extensively delocalized LUMO and a wide HOMO-LUMO gap, which arise from the combination of a cyclic π-system, strong electronic communication between the closely spaced borons, and the attachment of electron-deficient pendent groups. The binding of small anions to the electron-deficient macrocycle and molecular model compounds is investigated and emissive exciplexes are detected in aromatic solvents.

15.
J Am Chem Soc ; 141(18): 7453-7462, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30998336

RESUMEN

We demonstrate that the modification of anthracene with B ← N Lewis pairs at their periphery serves as a highly effective tool to modify the electronic structure with important ramifications on the generation and reactivity toward singlet oxygen. A series of BN-fused dipyridylanthracenes with Me groups in different positions of the pyridyl ring have been prepared via directed electrophilic borylation. The steric and electronic effects of the substituents on the structural features and electronic properties of the isomeric borane-functionalized products have been investigated in detail, aided by experimental tools and computational studies. We find that BDPA-2Me, with Me groups adjacent to the pyridyl N, has the longest B-N distance and shows overall less structural distortions, whereas BDPA-5Me with the Me group close to the anthracene backbone experiences severe distortions that are reflected in the buckling of the anthracene framework and dislocation of the boron atoms from the planes of the phenyl rings they are attached to. The substitution pattern also has a dramatic effect on the self-sensitized reactivity of the acenes toward O2 and the thermal release of singlet oxygen from the respective endoperoxides. Kinetic analyses reveal that BDPA-2Me rapidly reacts with O2, whereas BDPA-5Me is converted only very slowly to its endoperoxide. However, the latter serves as an effective singlet oxygen sensitizer, as demonstrated in the preferential formation of the endoperoxide of dimethylanthracene in a competition experiment. These results demonstrate that even relatively small modifications in the substitution of the pyridyl ring of BN-fused dipyridylanthracenes change the steric and electronic structure, resulting in dramatically different reactivity patterns. Our findings provide important guidelines for the design of highly effective sensitizers for singlet oxygen on one hand and the realization of materials that readily form endoperoxides in a self-sensitized manner and then thermally release singlet oxygen on demand on the other hand.

16.
J Am Chem Soc ; 141(40): 15963-15971, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31529968

RESUMEN

Classical Lewis pairs (LPs) between unhindered electron-poor Lewis acids (LAs) and electron-rich Lewis bases (LBs) present an overlooked motif with tremendous potential as dynamic cross-links in transient polymer networks (TPNs) for self-healing and stimuli-responsive applications. We demonstrate that simple and intuitive matching of weak/strong organoborane LA and amine LB pairs offers access to a large set of binding equilibrium constants, Keq, that span ∼6 orders and dissociation rate constants, kdiss, that span ∼7 orders of magnitude. The implementation in polystyrene (PS)/polydimethylsiloxane (PDMS) blends results in dynamically cross-linked networks with bulk thermomechanical properties that are directly correlated with the strength and kinetic parameters for the LP interactions. The LP dynamic cross-link design is highly versatile and broadly applicable to different polymer architectures as demonstrated in the formation of reprocessable elastomers from Lewis base-decorated high molecular weight PDMS in combination with Lewis acid-decorated PS when reinforced with fumed silica as a filler.

17.
Chemistry ; 25(43): 10133-10140, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31115095

RESUMEN

Given that pyrene represents one of the most versatile chromophores, the development of new selective routes for its functionalization and tuning of its emission properties is highly desirable. Pyrene-based BN Lewis pair (LP)-functionalized polycyclic aromatic hydrocarbons (PAHs) were prepared by regioselective Lewis base-directed electrophilic aromatic substitution. The requisite 1,6-dipyridylpyrene ligands were accessed by Suzuki-Miyaura cross-coupling of 1,6-bis(pinacolatoboryl)pyrenes with 2-bromopyridine derivatives. Subsequent electrophilic borylation with BCl3 in the presence of AlCl3 and 2,6-di-tert-butylpyridine as a hindered base produced the dichloroborane complexes, which were then in situ reacted with diphenyl or diethyl zinc. The presence or absence of alkyl chains in the 3,8-positions of the pyrene moiety determined the position of the B-C bond formation (2,7 in the non-K region versus 5,10 in the K region) and thereby also the size of the BN heterocycle (five- versus six-membered). The impact of the regioisomeric borylation on the electrochemical, photophysical and structural properties was investigated and the conclusions supported by theoretical calculations. The rapid synthesis of derivatives that are borylated in the K region also suggests strong potential for the development of pyrene derivatives that are otherwise difficult to access.

18.
Chemistry ; 25(60): 13799-13810, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31408217

RESUMEN

The Lewis acidic character of borinic-acid-functionalized polymers suggests broad potential applications in supramolecular materials, chemo- and biosensors, as well as supported catalysts. Two highly electron-deficient borinic acid copolymers (3 a and 3 b) with variable steric hindrance at the boron center were prepared by reaction of aryldibromoboranes ArBBr2 (2, Ar=2,4-Cl2 Ph, 3,5-Cl2 Ph) with a 10 % stannylated polystyrene random copolymer, followed by conversion to the desired PS-B(Ar)OH functionalities. The supramolecular assembly of these polymers through Lewis acid-Lewis base interactions and reversible covalent B-O-B bond formation was investigated. Exposure of a polymer solution of 3 a to pyridine triggered spontaneous gelation, whereas 3 b only gelled upon addition of molecular sieves to favor formation of boroxane crosslinks. The crosslinking process was readily reversed by addition of small amounts of water or wet solvent. The dynamic processes were studied in detail by variable-temperature (VT) NMR by using molecular model compounds. The polymers and their corresponding model compounds were also examined as catalysts in the amide bond formation reaction between phenylacetic acid and benzylamine. The 3,5-dichlorophenyl borinic acid derivatives proved to be the more effective catalysts. Mechanistic studies suggested that the borane Lewis acid-catalyzed coupling involves initial acid-induced protodeboronation to release the dichlorophenyl boronic acid as the active catalyst.

19.
Angew Chem Int Ed Engl ; 58(18): 5846-5870, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30426641

RESUMEN

The past decade has witnessed tremendous advances in the synthesis of polymers that contain elements from the main groups beyond those found in typical organic polymers. Unique properties that arise from dramatic differences in bonding and molecular geometry, electronic structure, and chemical reactivity, are exploited in diverse application fields. Herein we highlight recent advances in inorganic backbone polymers, discuss how Lewis acid/base functionalization of polymers results in unprecedented reactivity, and survey conjugated hybrids with unique electronic structures for sensor and device applications.

20.
Macromol Rapid Commun ; 39(22): e1800456, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30073729

RESUMEN

A new B-N functionalized polyaromatic building block for conjugated hybrid polymers is developed. Bromine-functionalized dipyridylfluorene is first subjected to Lewis-base-directed electrophilic borylation and subsequently incorporated into conjugated polymers via transition-metal-catalyzed cross-coupling reactions. The borane monomer exhibits bright blue luminescence in solution, as a result of the rigid ladder-type structure generated upon electrophilic borylation. Yamamoto coupling gives rise to a homopolymer and Stille coupling to a vinylene-bridged copolymer. Polymerization of the BN-fused ladder molecules leads to large bathochromic shifts in absorption and emission, which are most pronounced for the vinylene-bridged copolymer. The polymers display strong luminescence in solution with quantum yields of 55% and 78% and sub-ns fluorescence lifetimes; the copolymer also exhibits bright yellow luminescence in the solid state when precipitated from solution.


Asunto(s)
Boro/química , Fluorenos/química , Luminiscencia , Nitrógeno/química , Polímeros/síntesis química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA