Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nature ; 598(7880): 353-358, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34588695

RESUMEN

Time-restricted feeding (TRF) has recently gained interest as a potential anti-ageing treatment for organisms from Drosophila to humans1-5. TRF restricts food intake to specific hours of the day. Because TRF controls the timing of feeding, rather than nutrient or caloric content, TRF has been hypothesized to depend on circadian-regulated functions; the underlying molecular mechanisms of its effects remain unclear. Here, to exploit the genetic tools and well-characterized ageing markers of Drosophila, we developed an intermittent TRF (iTRF) dietary regimen that robustly extended fly lifespan and delayed the onset of ageing markers in the muscles and gut. We found that iTRF enhanced circadian-regulated transcription and that iTRF-mediated lifespan extension required both circadian regulation and autophagy, a conserved longevity pathway. Night-specific induction of autophagy was both necessary and sufficient to extend lifespan on an ad libitum diet and also prevented further iTRF-mediated lifespan extension. By contrast, day-specific induction of autophagy did not extend lifespan. Thus, these results identify circadian-regulated autophagy as a critical contributor to iTRF-mediated health benefits in Drosophila. Because both circadian regulation and autophagy are highly conserved processes in human ageing, this work highlights the possibility that behavioural or pharmaceutical interventions that stimulate circadian-regulated autophagy might provide people with similar health benefits, such as delayed ageing and lifespan extension.


Asunto(s)
Autofagia/fisiología , Ritmo Circadiano/fisiología , Drosophila melanogaster/fisiología , Conducta Alimentaria/fisiología , Longevidad/fisiología , Envejecimiento/genética , Envejecimiento/efectos de la radiación , Animales , Autofagia/genética , Biomarcadores , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Oscuridad , Drosophila melanogaster/genética , Drosophila melanogaster/efectos de la radiación , Conducta Alimentaria/efectos de la radiación , Femenino , Longevidad/genética , Longevidad/efectos de la radiación , Masculino , Factores de Tiempo
2.
J Exp Biol ; 223(Pt 11)2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32366685

RESUMEN

Factors that mediate ethanol preference in Drosophila melanogaster are not well understood. A major confound has been the use of diverse methods to estimate ethanol consumption. We measured fly consumptive ethanol preference on base diets varying in nutrients, taste and ethanol concentration. Both sexes showed an ethanol preference that was abolished on high nutrient concentration diets. Additionally, manipulating total food intake without altering the nutritive value of the base diet or the ethanol concentration was sufficient to evoke or eliminate ethanol preference. Absolute ethanol intake and food volume consumed were stronger predictors of ethanol preference than caloric intake or the dietary caloric content. Our findings suggest that the effect of the base diet on ethanol preference is largely mediated by total consumption associated with the delivery medium, which ultimately determines the level of ethanol intake. We speculate that a physiologically relevant threshold for ethanol intake is essential for preferential ethanol consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas , Drosophila melanogaster , Animales , Dieta , Ingestión de Energía , Etanol , Femenino , Masculino
3.
Proc Natl Acad Sci U S A ; 114(36): 9737-9742, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827349

RESUMEN

Changes in body temperature can profoundly affect survival. The dramatic longevity-enhancing effect of cold has long been known in organisms ranging from invertebrates to mammals, yet the underlying mechanisms have only recently begun to be uncovered. In the nematode Caenorhabditis elegans, this process is regulated by a thermosensitive membrane TRP channel and the DAF-16/FOXO transcription factor, but in more complex organisms the underpinnings of cold-induced longevity remain largely mysterious. We report that, in Drosophila melanogaster, variation in ambient temperature triggers metabolic changes in protein translation, mitochondrial protein synthesis, and posttranslational regulation of the translation repressor, 4E-BP (eukaryotic translation initiation factor 4E-binding protein). We show that 4E-BP determines Drosophila lifespan in the context of temperature changes, revealing a genetic mechanism for cold-induced longevity in this model organism. Our results suggest that the 4E-BP pathway, chiefly thought of as a nutrient sensor, may represent a master metabolic switch responding to diverse environmental factors.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Animales Modificados Genéticamente , Frío , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Técnicas de Inactivación de Genes , Genes de Insecto , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Longevidad/genética , Longevidad/fisiología , Masculino , Proteínas Mitocondriales/biosíntesis , Factores de Iniciación de Péptidos/deficiencia , Factores de Iniciación de Péptidos/genética , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Temperatura
4.
Bioorg Med Chem Lett ; 28(16): 2794-2796, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29079470

RESUMEN

RNA regulation and maintenance are critical for proper cell function. Small molecules that specifically alter RNA sequence would be exceptionally useful as probes of RNA structure and function or as potential therapeutics. Here, we demonstrate a photochemical approach for altering the trinucleotide expanded repeat causative of myotonic muscular dystrophy type 1 (DM1), r(CUG)exp. The small molecule, 2H-4-Ru, binds to r(CUG)exp and converts guanosine residues to 8-oxo-7,8-dihydroguanosine upon photochemical irradiation. We demonstrate targeted modification upon irradiation in cell culture and in Drosophila larvae provided a diet containing 2H-4-Ru. Our results highlight a general chemical biology approach for altering RNA sequence in vivo by using small molecules and photochemistry. Furthermore, these studies show that addition of 8-oxo-G lesions into RNA 3' untranslated regions does not affect its steady state levels.


Asunto(s)
ARN/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Secuencia de Bases , Células Cultivadas , Drosophila , Estructura Molecular , Procesos Fotoquímicos , ARN/química , ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/química
5.
Nat Methods ; 11(5): 535-40, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24681694

RESUMEN

Food intake is a fundamental parameter in animal studies. Despite the prevalent use of Drosophila in laboratory research, precise measurements of food intake remain challenging in this model organism. Here, we compare several common Drosophila feeding assays: the capillary feeder (CAFE), food labeling with a radioactive tracer or colorimetric dye and observations of proboscis extension (PE). We show that the CAFE and radioisotope labeling provide the most consistent results, have the highest sensitivity and can resolve differences in feeding that dye labeling and PE fail to distinguish. We conclude that performing the radiolabeling and CAFE assays in parallel is currently the best approach for quantifying Drosophila food intake. Understanding the strengths and limitations of methods for measuring food intake will greatly advance Drosophila studies of nutrition, behavior and disease.


Asunto(s)
Conducta Animal , Drosophila melanogaster/fisiología , Ingestión de Alimentos , Conducta Alimentaria , Animales , Colorimetría , Femenino , Genética Conductual/métodos , Masculino , Trazadores Radiactivos , Reproducibilidad de los Resultados , Proyectos de Investigación , Factores Sexuales
8.
J Nutr ; 145(12): 2789-96, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26491123

RESUMEN

BACKGROUND: Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. OBJECTIVES: We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. METHODS: We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. RESULTS: An acidic diet increased Drosophila gustatory responses (40-230%) and food intake (5-50%) and extended survival (10-160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5-20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. CONCLUSIONS: Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and survival.


Asunto(s)
Drosophila melanogaster/fisiología , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Alimentos , Longevidad/fisiología , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/microbiología , Femenino , Concentración de Iones de Hidrógeno , Masculino , Mutación , Gusto/genética
9.
bioRxiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979352

RESUMEN

Sleep and feeding are vital homeostatic behaviors, and disruptions in either can result in substantial metabolic consequences. Distinct neuronal manipulations in Drosophila can dissociate sleep loss from subsequent homeostatic rebound, offering an optimal platform to examine the precise interplay between these fundamental behaviors. Here, we investigate concomitant changes in sleep and food intake in individual animals, as well as respiratory metabolic expenditure, that accompany behavioral and genetic manipulations that induce sleep loss in Drosophila melanogaster. We find that sleep disruptions resulting in energy deficit through increased metabolic expenditure and manifested as increased food intake were consistently followed by rebound sleep. In contrast, "soft" sleep loss, which does not induce rebound sleep, is not accompanied by increased metabolism and food intake. Our results demonstrate that homeostatic sleep rebound is linked to energy deficit accrued during sleep loss. Collectively, these findings support the notion that sleep functions to conserve energy and highlight the need to examine the effects of metabolic therapeutics on sleep.

10.
Sci Rep ; 14(1): 1541, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233464

RESUMEN

Mutations in Cullin-3 (Cul3), a conserved gene encoding a ubiquitin ligase, are strongly associated with autism spectrum disorder (ASD). Here, we characterize ASD-related pathologies caused by neuron-specific Cul3 knockdown in Drosophila. We confirmed that neuronal Cul3 knockdown causes short sleep, paralleling sleep disturbances in ASD. Because sleep defects and ASD are linked to metabolic dysregulation, we tested the starvation response of neuronal Cul3 knockdown flies; they starved faster and had lower triacylglyceride levels than controls, suggesting defects in metabolic homeostasis. ASD is also characterized by increased biomarkers of oxidative stress; we found that neuronal Cul3 knockdown increased sensitivity to hyperoxia, an exogenous oxidative stress. Additional hallmarks of ASD are deficits in social interactions and learning. Using a courtship suppression assay that measures social interactions and memory of prior courtship, we found that neuronal Cul3 knockdown reduced courtship and learning compared to controls. Finally, we found that neuronal Cul3 depletion alters the anatomy of the mushroom body, a brain region required for memory and sleep. Taken together, the ASD-related phenotypes of neuronal Cul3 knockdown flies establish these flies as a genetic model to study molecular and cellular mechanisms underlying ASD pathology, including metabolic and oxidative stress dysregulation and neurodevelopment.


Asunto(s)
Trastorno del Espectro Autista , Proteínas de Drosophila , Animales , Trastorno del Espectro Autista/genética , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo
11.
Cell Metab ; 35(7): 1114-1131, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37392742

RESUMEN

An epidemic of obesity has affected large portions of the world, increasing the risk of developing many different age-associated diseases, including cancer, cardiovascular disease, and diabetes. In contrast with the prevailing notion that "a calorie is just a calorie," there are clear differences, within and between individuals, in the metabolic response to different macronutrient sources. Recent findings challenge this oversimplification; calories from different macronutrient sources or consumed at different times of day have metabolic effects beyond their value as fuel. Here, we summarize discussions conducted at a recent NIH workshop that brought together experts in calorie restriction, macronutrient composition, and time-restricted feeding to discuss how dietary composition and feeding schedule impact whole-body metabolism, longevity, and healthspan. These discussions may provide insights into the long-sought molecular mechanisms engaged by calorie restriction to extend lifespan, lead to novel therapies, and potentially inform the development of a personalized food-as-medicine approach to healthy aging.


Asunto(s)
Envejecimiento Saludable , Humanos , Ingestión de Energía , Dieta , Restricción Calórica , Obesidad , Longevidad/fisiología
12.
Proc Natl Acad Sci U S A ; 106(44): 18633-7, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19841272

RESUMEN

Dietary restriction (DR) is a widely conserved intervention leading to lifespan extension. Despite considerable effort, the mechanisms underlying DR remain poorly understood. In particular, it remains unclear whether DR prolongs life through conserved mechanisms in different species. Here, we show that, in the most common experimental conditions, lifespan extension by DR is abolished by providing Drosophila with ad libitum water, without altering food intake, indicating that DR, as conventionally studied in flies, is fundamentally different from the phenomenon studied in mammals. We characterize an alternative dietary paradigm that elicits robust lifespan extension irrespective of water availability, and thus likely represents a more relevant model for mammalian DR. Our results support the view that protein:carbohydrate ratio is the main dietary determinant of fly lifespan. These findings have broad implications for the study of lifespan and nutrition.


Asunto(s)
Restricción Calórica , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/fisiología , Alimentos , Longevidad/efectos de los fármacos , Longevidad/fisiología , Agua/farmacología , Animales , Dieta , Conducta de Ingestión de Líquido/fisiología , Conducta Alimentaria/fisiología , Fertilidad
13.
Curr Biol ; 31(15): R946-R947, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34375595

RESUMEN

Many animals rely on taste to identify nutritious foods and to avoid the consumption of harmful substances. The tastes of macronutrients, as well as of non-caloric micronutrients such as sodium and calcium, contribute to the regulation of ingestive behavior1,2. Whether vitamins also affect feeding behavior through taste is less clear. Here, we show that the fly Drosophila melanogaster has a strong preference for consuming a vitamin-containing diet: both sexes show a preference for folic acid, whereas only females show a preference for riboflavin. Females show a preference with vitamin concentrations as low as ∼10 nM - at least 50,000-fold lower than the concentration needed for sucrose preference. This female vitamin preference requires inputs from external and internal taste organs, suggesting that post-ingestive signals, in the absence of gustatory input, are insufficient to actuate preferential consumption of vitamin-containing diets. Our studies demonstrate that vitamin perception is an important determinant of feeding behavior.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Femenino , Masculino , Gusto/fisiología , Percepción del Gusto , Vitaminas
14.
Sci Rep ; 11(1): 2099, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483521

RESUMEN

The prototypical M13 peptidase, human Neprilysin, functions as a transmembrane "ectoenzyme" that cleaves neuropeptides that regulate e.g. glucose metabolism, and has been linked to type 2 diabetes. The M13 family has undergone a remarkable, and conserved, expansion in the Drosophila genus. Here, we describe the function of Drosophila melanogaster Neprilysin-like 15 (Nepl15). Nepl15 is likely to be a secreted protein, rather than a transmembrane protein. Nepl15 has changes in critical catalytic residues that are conserved across the Drosophila genus and likely renders the Nepl15 protein catalytically inactive. Nevertheless, a knockout of the Nepl15 gene reveals a reduction in triglyceride and glycogen storage, with the effects likely occurring during the larval feeding period. Conversely, flies overexpressing Nepl15 store more triglycerides and glycogen. Protein modeling suggests that Nepl15 is able to bind and sequester peptide targets of catalytically active Drosophila M13 family members, peptides that are conserved in humans and Drosophila, potentially providing a novel mechanism for regulating the activity of neuropeptides in the context of lipid and carbohydrate homeostasis.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Drosophila melanogaster/metabolismo , Metabolismo de los Lípidos , Neprilisina/metabolismo , Animales , Catálisis , Cuerpo Adiposo/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Homeostasis , Masculino , Neprilisina/química , Neprilisina/genética , Neuropéptidos/metabolismo , Unión Proteica , Conformación Proteica , Proteolisis
15.
Nat Commun ; 12(1): 4285, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257279

RESUMEN

Neurofibromatosis type 1 is a chronic multisystemic genetic disorder that results from loss of function in the neurofibromin protein. Neurofibromin may regulate metabolism, though the underlying mechanisms remain largely unknown. Here we show that neurofibromin regulates metabolic homeostasis in Drosophila via a discrete neuronal circuit. Loss of neurofibromin increases metabolic rate via a Ras GAP-related domain-dependent mechanism, increases feeding homeostatically, and alters lipid stores and turnover kinetics. The increase in metabolic rate is independent of locomotor activity, and maps to a sparse subset of neurons. Stimulating these neurons increases metabolic rate, linking their dynamic activity state to metabolism over short time scales. Our results indicate that neurofibromin regulates metabolic rate via neuronal mechanisms, suggest that cellular and systemic metabolic alterations may represent a pathophysiological mechanism in neurofibromatosis type 1, and provide a platform for investigating the cellular role of neurofibromin in metabolic homeostasis.


Asunto(s)
Neurofibromina 1/metabolismo , Neuronas/metabolismo , Animales , Drosophila , Femenino , Cinética , Metabolismo de los Lípidos/fisiología , Masculino
16.
Neuron ; 50(4): 561-73, 2006 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-16701207

RESUMEN

G protein-activated inwardly rectifying potassium (GIRK) channels mediate slow synaptic inhibition and control neuronal excitability. It is unknown whether GIRK channels are subject to regulation by guanine dissociation inhibitor (GDI) proteins like LGN, a mammalian homolog of Drosophila Partner of Inscuteable (mPINS). Here we report that LGN increases basal GIRK current but reduces GIRK activation by metabotropic transmitter receptors coupled to Gi or Go, but not Gs. Moreover, expression of its N-terminal, TPR-containing protein interaction domains mimics the effects of LGN in mammalian cells, probably by releasing sequestered endogenous LGN. In hippocampal neurons, expression of LGN, or LGN fragments that mimic or enhance LGN activity, hyperpolarizes the resting potential due to increased basal GIRK activity and reduces excitability. Using Lenti virus for LGN RNAi to reduce endogenous LGN levels in hippocampal neurons, we further show an essential role of LGN for maintaining basal GIRK channel activity and for harnessing neuronal excitability.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Encéfalo/metabolismo , Células Cultivadas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Inmunoprecipitación , Potenciales de la Membrana/fisiología , Oocitos/metabolismo , Técnicas de Placa-Clamp , Ratas , Xenopus
17.
Trends Biochem Sci ; 30(6): 318-24, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15950876

RESUMEN

Modulators of G-protein signaling have a central role in controlling cell physiology and represent over half of all marketed prescription drugs. G-protein pathways have traditionally been targeted by developing ligands to the extracellular surface of a small subset of the estimated approximately 1000 G-protein-coupled receptors in humans. The intracellular machinery, consisting of the cytosolic receptor surfaces and heterotrimeric G proteins, provides an equivalent diversity of targets that has remained relatively unexplored until now. This review summarizes recent efforts using combinatorial peptide libraries to develop new G-protein signaling modulators targeting intracellular components.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Proteínas de Unión al GTP/efectos de los fármacos , Biblioteca de Péptidos , Péptidos/farmacología , Receptores Acoplados a Proteínas G/efectos de los fármacos , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Humanos , Ligandos , Péptidos/química , ARN Mensajero , Receptor Cross-Talk , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
18.
iScience ; 23(1): 100776, 2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31901635

RESUMEN

Longitudinal measurements of food intake remain a challenge in Drosophila studies of nutrition and behavior. Here, we report an improved method for measuring fly food intake using dye-labeled food and excreta quantification (EX-Q). Reducing the surface area of the medium maximized excreta recovery and the accuracy in estimating total consumption. The EX-Q method is compatible with agar-based medium and makes it possible to measure consumption over an extended period and at multiple time points without sacrificing flies. Using EX-Q, we revealed nutrient- and age-specific features of Drosophila feeding behavior. Daily consumption of a chemically defined diet was relatively consistent over the first 25 days of adulthood. Omitting amino acids or vitamins from the diet reduced consumption in both sexes, whereas omitting sugars or cholesterol primarily affected female food intake. Our results demonstrate EX-Q as a simple, reliable, and nondestructive method for longitudinal studies of solid food intake in Drosophila.

19.
PLoS One ; 15(1): e0227822, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31940417

RESUMEN

Peptidylarginine deiminase (PAD) modifies peptidylarginine and converts it to peptidylcitrulline in the presence of elevated calcium. Protein modification can lead to severe changes in protein structure and function, and aberrant PAD activity is linked to human pathologies. While PAD homologs have been discovered in vertebrates-as well as in protozoa, fungi, and bacteria-none have been identified in Drosophila melanogaster, a simple and widely used animal model for human diseases. Here, we describe the development of a human PAD overexpression model in Drosophila. We established fly lines harboring human PAD2 or PAD4 transgenes for ectopic expression under control of the GAL4/UAS system. We show that ubiquitous or nervous system expression of PAD2 or PAD4 have minimal impact on fly lifespan, fecundity, and the response to acute heat stress. Although we did not detect citrullinated proteins in fly homogenates, fly-expressed PAD4-but not PAD2-was active in vitro upon Ca2+ supplementation. The transgenic fly lines may be valuable in future efforts to develop animal models of PAD-related disorders and for investigating the biochemistry and regulation of PAD function.


Asunto(s)
Drosophila melanogaster/genética , Arginina Deiminasa Proteína-Tipo 2/genética , Arginina Deiminasa Proteína-Tipo 4/genética , Transgenes , Animales , Animales Modificados Genéticamente/genética , Drosophila melanogaster/fisiología , Femenino , Fertilidad , Respuesta al Choque Térmico , Humanos , Longevidad , Masculino , Regulación hacia Arriba
20.
Cancer Res ; 80(12): 2512-2522, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32409309

RESUMEN

The Hippo pathway regulates cell proliferation and organ size through control of the transcriptional regulators YAP (yes-associated protein) and TAZ. Upon extracellular stimuli such as cell-cell contact, the pathway negatively regulates YAP through cytoplasmic sequestration. Under conditions of low cell density, YAP is nuclear and associates with enhancer regions and gene promoters. YAP is mainly described as a transcriptional activator of genes involved in cell proliferation and survival. Using a genome-wide approach, we show here that, in addition to its known function as a transcriptional activator, YAP functions as a transcriptional repressor by interacting with the multifunctional transcription factor Yin Yang 1 (YY1) and Polycomb repressive complex member enhancer of zeste homologue 2 (EZH2). YAP colocalized with YY1 and EZH2 on the genome to transcriptionally repress a broad network of genes mediating a host of cellular functions, including repression of the cell-cycle kinase inhibitor p27, whose role is to functionally promote contact inhibition. This work unveils a broad and underappreciated aspect of YAP nuclear function as a transcriptional repressor and highlights how loss of contact inhibition in cancer is mediated in part through YAP repressive function. SIGNIFICANCE: This study provides new insights into YAP as a broad transcriptional repressor of key regulators of the cell cycle, in turn influencing contact inhibition and tumorigenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ciclo Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Neoplasias/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Factor de Transcripción YY1/metabolismo , Animales , Carcinogénesis/genética , Fraccionamiento Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes/genética , Humanos , Ratones , Neoplasias/patología , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA